Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detectio… (voir plus)n have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.
2025-04-06
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (publié)
Large language models have revolutionized natural language processing through self-supervised pretraining on massive datasets. Inspired by t… (voir plus)his success, researchers have explored adapting these methods to speech by discretizing continuous audio into tokens using neural audio codecs. However, existing approaches face limitations, including high bitrates, the loss of either semantic or acoustic information, and the reliance on multi-codebook designs when trying to capture both, which increases architectural complexity for downstream tasks. To address these challenges, we introduce FocalCodec, an efficient low-bitrate codec based on focal modulation that utilizes a single binary codebook to compress speech between 0.16 and 0.65 kbps. FocalCodec delivers competitive performance in speech resynthesis and voice conversion at lower bitrates than the current state-of-the-art, while effectively handling multilingual speech and noisy environments. Evaluation on downstream tasks shows that FocalCodec successfully preserves sufficient semantic and acoustic information, while also being well-suited for generative modeling. Demo samples, code and checkpoints are available at https://lucadellalib.github.io/focalcodec-web/.
Large language models have revolutionized natural language processing through self-supervised pretraining on massive datasets. Inspired by t… (voir plus)his success, researchers have explored adapting these methods to speech by discretizing continuous audio into tokens using neural audio codecs. However, existing approaches face limitations, including high bitrates, the loss of either semantic or acoustic information, and the reliance on multi-codebook designs when trying to capture both, which increases architectural complexity for downstream tasks. To address these challenges, we introduce FocalCodec, an efficient low-bitrate codec based on focal modulation that utilizes a single binary codebook to compress speech between 0.16 and 0.65 kbps. FocalCodec delivers competitive performance in speech resynthesis and voice conversion at lower bitrates than the current state-of-the-art, while effectively handling multilingual speech and noisy environments. Evaluation on downstream tasks shows that FocalCodec successfully preserves sufficient semantic and acoustic information, while also being well-suited for generative modeling. Demo samples, code and checkpoints are available at https://lucadellalib.github.io/focalcodec-web/.
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detectio… (voir plus)n have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.
Interpreting the decisions of deep learning models, including audio classifiers, is crucial for ensuring the transparency and trustworthines… (voir plus)s of this technology. In this paper, we introduce LMAC-ZS (Listenable Maps for Audio Classifiers in the Zero-Shot context), which, to the best of our knowledge, is the first decoder-based post-hoc interpretation method for explaining the decisions of zero-shot audio classifiers. The proposed method utilizes a novel loss function that maximizes the faithfulness to the original similarity between a given text-and-audio pair. We provide an extensive evaluation using the Contrastive Language-Audio Pretraining (CLAP) model to showcase that our interpreter remains faithful to the decisions in a zero-shot classification context. Moreover, we qualitatively show that our method produces meaningful explanations that correlate well with different text prompts.
In this paper, we explore audio-editing with non-rigid text edits. We show that the proposed editing pipeline is able to create audio edits … (voir plus)that remain faithful to the input audio. We explore text prompts that perform addition, style transfer, and in-painting. We quantitatively and qualitatively show that the edits are able to obtain results which outperform Audio-LDM, a recently released text-prompted audio generation model. Qualitative inspection of the results points out that the edits given by our approach remain more faithful to the input audio in terms of keeping the original onsets and offsets of the audio events.
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (voir plus)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (voir plus)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks.
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained… (voir plus) classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.