Portrait de Xujie Si

Xujie Si

Membre affilié
Chaire en IA Canada-CIFAR
Professeur adjoint, University of Toronto, Département d'informatique
Sujets de recherche
Apprentissage de la programmation
Apprentissage de représentations
Raisonnement

Biographie

Xujie Si est professeur adjoint au Département d'informatique de l'Université de Toronto. Il est également membre affilié de la faculté de l'Institut Vector et membre affilié de Mila – Institut québécois d’intelligence artificielle, où il est titulaire d'une chaire en IA Canada-CIFAR. Il a obtenu un doctorat de l'Université de Pennsylvanie en 2020. Il est également détenteur d’une maîtrise de l'Université Vanderbilt et d’une licence (avec mention) de l'Université de Nankai. Ses recherches se situent à l'intersection des langages de programmation et de l'intelligence artificielle. Il s'intéresse au développement de techniques basées sur l'apprentissage pour aider les programmeurs à construire plus facilement de meilleurs logiciels, à l'intégration de la programmation logique à des systèmes d'apprentissage différentiables afin de permettre un raisonnement interprétable et évolutif, et à l'exploitation des abstractions de programmation pour un apprentissage fiable et efficace en matière de données. Ses travaux ont été récompensés par le Prix du service distingué ACM-SIGPLAN et ont été présentés lors de conférences sur les langages de programmation et l'apprentissage automatique.

Étudiants actuels

Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Maîtrise recherche - McGill

Publications

Novice Type Error Diagnosis with Natural Language Models
Chuqin Geng
Haolin Ye
Yixuan Li
Tianyu Han
Brigitte Pientka
Strong static type systems help programmers eliminate many errors without much burden of supplying type annotations. However, this flexibili… (voir plus)ty makes it highly non-trivial to diagnose ill-typed programs, especially for novice programmers. Compared to classic constraint solving and optimization-based approaches, the data-driven approach has shown great promise in identifying the root causes of type errors with higher accuracy. Instead of relying on hand-engineered features, this work explores natural language models for type error localization, which can be trained in an end-to-end fashion without requiring any features. We demonstrate that, for novice type error diagnosis, the language model-based approach significantly outperforms the previous state-of-the-art data-driven approach. Specifically, our model could predict type errors correctly 62% of the time, outperforming the state-of-the-art Nate's data-driven model by 11%, in a more rigorous accuracy metric. Furthermore, we also apply structural probes to explain the performance difference between different language models.