Portrait de Tal Arbel

Tal Arbel

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, McGill University, Département de génie électrique et informatique
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Vision par ordinateur

Biographie

Tal Arbel est professeure titulaire au Département de génie électrique et informatique de l’Université McGill, où elle dirige le groupe de vision probabiliste et le laboratoire d'imagerie médicale du Centre sur les machines intelligentes.

Elle est titulaire d'une chaire en IA Canada-CIFAR et membre associée de Mila – Institut québécois d’intelligence artificielle ainsi que du Centre de recherche sur le cancer Goodman. Les recherches de la professeure Arbel portent sur le développement de méthodes probabilistes d'apprentissage profond dans les domaines de la vision par ordinateur et de l’analyse d'imagerie médicale pour un large éventail d'applications dans le monde réel, avec un accent particulier sur les maladies neurologiques.

Elle a remporté le prix de la recherche Christophe Pierre 2019 de McGill Engineering. Elle fait régulièrement partie de l'équipe organisatrice de grandes conférences internationales sur la vision par ordinateur et l'analyse d'imagerie médicale (par exemple celles de la Medical Image Computing and Computer-Assisted Intervention Society/MICCAI et de Medical Imaging with Deep Learning/MIDL, l’International Conference on Computer Vision/ICCV ou encore la Conference on Computer Vision and Pattern Recognition/CVPR). Elle est rédactrice en chef et cofondatrice de la revue Machine Learning for Biomedical Imaging (MELBA).

Étudiants actuels

Postdoctorat - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Baccalauréat - McGill
Baccalauréat - McGill

Publications

Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
M. Jorge Cardoso
Su-Lin Lee
Veronika Cheplygina
Simone Balocco
Diana Mateus
Guillaume Zahnd
Lena Maier-Hein
Stefanie Demirci
Éric Granger
Luc Duong
M. Carbonneau
Shadi N. Albarqouni
G. Carneiro
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment
M. Cardoso
Fei Gao
BERNHARD KAINZ
T. Walsum
Kuangyu Shi
Kanwal K. Bhatia
R. Peter
Tom Kamiel Magda Vercauteren
Mauricio Reyes
Adrian Dalca
Roland Wiest
W. Niessen
B. Emmer
Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment
M. Jorge Cardoso
Fei Gao
BERNHARD KAINZ
T. Walsum
Kuangyu Shi
Kanwal K. Bhatia
R. Peter
Tom Kamiel Magda Vercauteren
Mauricio Reyes
Adrian Dalca
Roland Wiest
Wiro Niessen
B. Emmer
Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging
Henning Müller
B. Kelm
Weidong (Tom) Cai
M. Jorge Cardoso
Georg Langs
Bjoern Menze
Dimitris N. Metaxas
Albert A. Montillo
William Wells
Shaoting Zhang
Albert C.S. Chung
M. Jenkinson
Annemie Ribbens
Clinical Image-Based Procedures. Translational Research in Medical Imaging
Ian J. Gerard
Marta Kersten-Oertel
Simon Drouin
Jeffery Alan Hall
Kevin Petrecca
Dante De Nigris
D. Collins
Bayesian and grAphical Models for Biomedical Imaging
M. Jorge Cardoso
Ivor J. A. Simpson
Annemie Ribbens
Bayesian and grAphical Models for Biomedical Imaging
M. Cardoso
Ivor J. A. Simpson
Annemie Ribbens