Portrait de Rishabh Agarwal

Rishabh Agarwal

Membre industriel associé
Professeur associé, McGill University, École d'informatique
Google DeepMind
Sujets de recherche
Apprentissage par renforcement
Apprentissage profond
Grands modèles de langage (LLM)

Biographie

Je suis chercheur dans l'équipe DeepMind de Google à Montréal, professeur adjoint à l'Université McGill et membre industriel associé à Mila - Institut québécois d'intelligence artificielle. J'ai réalisé mon doctorat au sein de Mila sous la supervision d'Aaron Courville et Marc Bellemare. Avant cela, j'ai eu l'opportunité de travailler pendant un an avec l'équipe de Geoffrey Hinton chez Google Brain, à Toronto. J'ai obtenu mon diplôme en informatique et en ingénierie à l'IIT Bombay.

Mes recherches se concentrent sur les modèles de langage et l'apprentissage par renforcement profond (RL). J'ai eu l'honneur de recevoir un prix pour un article exceptionnel présenté à NeurIPS.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
Avi Singh
John D Co-Reyes
Ankesh Anand
Piyush Patil
Xavier Garcia
Peter J. Liu
James Harrison
Jaehoon Lee
Kelvin Xu
Aaron T Parisi
Abhishek Kumar
A. Alemi
Alex Rizkowsky
Azade Nova
Ben Adlam
Bernd Bohnet
Hanie Sedghi
Gamaleldin Fathy Elsayed
Igor Mordatch … (voir 21 de plus)
Isabelle Simpson
Izzeddin Gur
Jasper Snoek
Jeffrey Pennington
Jiri Hron
Kathleen Kenealy
Kevin Swersky
Kshiteej Mahajan
Laura Culp
Lechao Xiao
Maxwell Bileschi
Noah Constant
Roman Novak
Rosanne Liu
Tris Brian Warkentin
Yundi Qian
Ethan Dyer
Behnam Neyshabur
Jascha Sohl-Dickstein
Yamini Bansal
Noah Fiedel
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often lim… (voir plus)ited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Ekin Dogus Cubuk
Sergei V. Kalinin
Igor Mordatch
Kevin M Roccapriore
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimu… (voir plus)lated by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities. These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Learning Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Kevin Roccapriore
Ekin Dogus Cubuk
Sergei Kalinin
Igor Mordatch
We introduce a machine learning approach to determine the transition rates of silicon atoms on a single layer of carbon atoms, when stimulat… (voir plus)ed by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition rates. These rates are then applied to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Learning Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Kevin Roccapriore
Ekin Dogus Cubuk
Sergei Kalinin
Igor Mordatch
We introduce a machine learning approach to determine the transition rates of silicon atoms on a single layer of carbon atoms, when stimulat… (voir plus)ed by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition rates. These rates are then applied to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Discovering the Electron Beam Induced Transition Rates for Silicon Dopants in Graphene with Deep Neural Networks in the STEM
Kevin M Roccapriore
Max Schwarzer
Joshua Greaves
Jesse Farebrother
Colton Bishop
Maxim Ziatdinov
Igor Mordatch
Ekin Dogus Cubuk
Sergei V Kalinin
Bigger, Better, Faster: Human-level Atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Bootstrapped Representations in Reinforcement Learning
Charline Le Lan
Stephen Tu
Mark Rowland
Anna Harutyunyan
Will Dabney
In reinforcement learning (RL), state representations are key to dealing with large or continuous state spaces. While one of the promises of… (voir plus) deep learning algorithms is to automatically construct features well-tuned for the task they try to solve, such a representation might not emerge from end-to-end training of deep RL agents. To mitigate this issue, auxiliary objectives are often incorporated into the learning process and help shape the learnt state representation. Bootstrapping methods are today's method of choice to make these additional predictions. Yet, it is unclear which features these algorithms capture and how they relate to those from other auxiliary-task-based approaches. In this paper, we address this gap and provide a theoretical characterization of the state representation learnt by temporal difference learning (Sutton, 1988). Surprisingly, we find that this representation differs from the features learned by Monte Carlo and residual gradient algorithms for most transition structures of the environment in the policy evaluation setting. We describe the efficacy of these representations for policy evaluation, and use our theoretical analysis to design new auxiliary learning rules. We complement our theoretical results with an empirical comparison of these learning rules for different cumulant functions on classic domains such as the four-room domain (Sutton et al, 1999) and Mountain Car (Moore, 1990).
A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace i… (voir plus)s represented by a neural network, and hence can bescaled to datasets with an effectively infinite number of rows and columns. Our method consistsin defining a loss function whose minimizer is the desired principal subspace, and constructing agradient estimate of this loss whose bias can be controlled.
Investigating Multi-task Pretraining and Generalization in Reinforcement Learning
Adrien Ali Taiga
Jesse Farebrother
Google Brain
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks
Jesse Farebrother
Joshua Greaves
Charline Le Lan
Auxiliary tasks improve the representations learned by deep reinforcement learning agents. Analytically, their effect is reasonably well-und… (voir plus)erstood; in practice, how-ever, their primary use remains in support of a main learning objective, rather than as a method for learning representations. This is perhaps surprising given that many auxiliary tasks are defined procedurally, and hence can be treated as an essentially infinite source of information about the environment. Based on this observation, we study the effectiveness of auxiliary tasks for learning rich representations, focusing on the setting where the number of tasks and the size of the agent’s network are simultaneously increased. For this purpose, we derive a new family of auxiliary tasks based on the successor measure. These tasks are easy to implement and have appealing theoretical properties. Combined with a suitable off-policy learning rule, the result is a representation learning algorithm that can be understood as extending Mahadevan & Maggioni (2007)’s proto-value functions to deep reinforcement learning – accordingly, we call the resulting object proto-value networks. Through a series of experiments on the Arcade Learning Environment, we demonstrate that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms, using only linear approximation and a small number (~4M) of interactions with the environment’s reward function.
Bigger, Better, Faster: Human-level Atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
Ghada Sokar
Utku Evci
In this work we identify the dormant neuron phenomenon in deep reinforcement learning, where an agent's network suffers from an increasing n… (voir plus)umber of inactive neurons, thereby affecting network expressivity. We demonstrate the presence of this phenomenon across a variety of algorithms and environments, and highlight its effect on learning. To address this issue, we propose a simple and effective method (ReDo) that Recycles Dormant neurons throughout training. Our experiments demonstrate that ReDo maintains the expressive power of networks by reducing the number of dormant neurons and results in improved performance.