Portrait de Pascal Vincent

Pascal Vincent

Membre industriel principal
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheur scientifique, Facebook AI Research (FAIR) Montréal
Sujets de recherche
Apprentissage de représentations
Apprentissage profond

Biographie

Pascal Vincent est chercheur à Meta (FAIR, Fundamental IA Research), professeur associé au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, membre fondateur de Mila – Institut québécois d’intelligence artificielle et chercheur associé à l'Institut canadien de recherches avancées (CIFAR, programme Apprentissage automatique, apprentissage biologique).

Ses recherches sur les principes et les algorithmes de l'apprentissage par représentation l'ont amené à développer plusieurs idées fondamentales qui sont devenues des éléments clés du succès des méthodes d'apprentissage profond. Parmi ses travaux les plus influents, il est coauteur de l'article fondateur sur les modèles de langage neuronaux « A Neural Probabilistic Language Model » (Bengio et al., 2013), qui a jeté les bases de tous les modèles de langage fondés sur les réseaux de neurones artificiels. Son travail sur les auto-encodeurs de débruitage (Vincent et al., 2008, 2010) a été le premier à proposer la tâche prétexte de remplir des blancs artificiellement introduits dans le but d'apprendre des représentations utiles dans n'importe quelle modalité, un précurseur de ce que l'on appelle aujourd'hui « l'apprentissage autosupervisé ». En 2011, il a développé le principe du denoising score matching (P. Vincent, « A connection between score matching and denoising autoencoders », Neural Computation, 2011), qui est maintenant couramment utilisé pour former des modèles génératifs basés sur la diffusion. Ses recherches actuelles se concentrent sur de nouvelles théories et de nouveaux algorithmes pour l'apprentissage de la représentation afin de permettre une généralisation robuste en dehors de la distribution.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni

Publications

Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
James Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Alexandre De Brébisson
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian G Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
Sébastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
François Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.