Portrait de Florian Bordes

Florian Bordes

Doctorat - UdeM
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage de représentations
Modèles génératifs
Vision par ordinateur

Publications

Improving the Scaling Laws of Synthetic Data with Deliberate Practice
Inspired by the principle of deliberate practice in human learning, we propose Deliberate Practice for Synthetic Data Generation (DP), a nov… (voir plus)el framework that improves sample efficiency through dynamic synthetic data generation. Prior work has shown that scaling synthetic data is inherently challenging, as naively adding new data leads to diminishing returns. To address this, pruning has been identified as a key mechanism for improving scaling, enabling models to focus on the most informative synthetic samples. Rather than generating a large dataset and pruning it afterward, DP efficiently approximates the direct generation of informative samples. We theoretically show how training on challenging, informative examples improves scaling laws and empirically validate that DP achieves better scaling performance with significantly fewer training samples and iterations. On ImageNet-100, DP generates 3.4x fewer samples and requires six times fewer iterations, while on ImageNet-1k, it generates 8x fewer samples with a 30% reduction in iterations, all while achieving superior performance compared to prior work.
IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments
Quentin Garrido
Justine T Kao
Adina Williams
Emmanuel Dupoux
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the or… (voir plus)iginal IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments
Quentin Garrido
Justine T Kao
Adina Williams
Emmanuel Dupoux
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the or… (voir plus)iginal IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments
Quentin Garrido
Justine T Kao
Adina Williams
Emmanuel Dupoux
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the or… (voir plus)iginal IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
Improving the Scaling Laws of Synthetic Data with Deliberate Practice
Improving the Scaling Laws of Synthetic Data with Deliberate Practice
Inspired by the principle of deliberate practice in human learning, we propose Deliberate Practice for Synthetic Data Generation (DP), a nov… (voir plus)el framework that improves sample efficiency through dynamic synthetic data generation. Prior work has shown that scaling synthetic data is inherently challenging, as naively adding new data leads to diminishing returns. To address this, pruning has been identified as a key mechanism for improving scaling, enabling models to focus on the most informative synthetic samples. Rather than generating a large dataset and pruning it afterward, DP efficiently approximates the direct generation of informative samples. We theoretically show how training on challenging, informative examples improves scaling laws and empirically validate that DP achieves better scaling performance with significantly fewer training samples and iterations. On ImageNet-100, DP generates 3.4x fewer samples and requires six times fewer iterations, while on ImageNet-1k, it generates 8x fewer samples with a 30 percent reduction in iterations, all while achieving superior performance compared to prior work.
Object-centric Binding in Contrastive Language-Image Pretraining
Object-centric Binding in Contrastive Language-Image Pretraining
Recent advances in vision language models (VLM) have been driven by contrastive models such as CLIP, which learn to associate visual informa… (voir plus)tion with their corresponding text descriptions. However, these models have limitations in understanding complex compositional scenes involving multiple objects and their spatial relationships. To address these challenges, we propose a novel approach that diverges from commonly used strategies, which rely on the design of hard-negative augmentations. Instead, our work focuses on integrating inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using any additional hard-negatives. To that end, we introduce a binding module that connects a scene graph, derived from a text description, with a slot-structured image representation, facilitating a structured similarity assessment between the two modalities. We also leverage relationships as text-conditioned visual constraints, thereby capturing the intricate interactions between objects and their contextual relationships more effectively. Our resulting model not only enhances the performance of CLIP-based models in multi-object compositional understanding but also paves the way towards more accurate and sample-efficient image-text matching of complex scenes.
Deliberate Practice with Synthetic Data
OC-CLIP : Object-centric binding in Contrastive Language-Image Pretraining
Recent advancements in vision-language models (VLMs) have been driven by contrastive models like CLIP which learn to associate visual inform… (voir plus)ation with their corresponding text descriptions. However, these models have limitations in understanding complex compositional scenes involving multiple objects and their spatial relationships. To address these challenges, we propose a novel approach that diverges from traditional data-centric methods of enhancing model performance with hard negatives examples. Our work instead focuses on integrating sufficient inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using additional data annotations. We introduce a binding module that connects a scene graph of the text with an induced graph-like representation of the image, facilitating a structured similarity assessment. We also leverage relationships as text-conditioned visual constraints, thereby capturing the intricate interactions between objects and their contextual relationships more effectively. Our resulting model (OC-CLIP) not only enhances the performance of CLIP in multi-object compositional understanding but also paves the way for more accurate and efficient image-text matching in complex scenes.
Stochastic positional embeddings improve masked image modeling
Amir Bar
Assaf Shocher
Mahmoud Assran
Trevor Darrell
Amir Globerson
A Picture is Worth More Than 77 Text Tokens: Evaluating CLIP-Style Models on Dense Captions
Jack Urbanek
Pietro Astolfi
Mary Williamson
Vasu Sharma