Portrait de Maxime Gasse

Maxime Gasse

Membre industriel associé
Professeur associé, Polytechnique Montréal, Département de génie informatique et génie logiciel
Chercheur scientifique principal, ServiceNow
Sujets de recherche
Agent basé sur un LLM
Apprentissage par renforcement
Causalité
Modèles probabilistes

Biographie

Je suis chercheur principal chez ServiceNow à Montréal, où je fais de la recherche à l'intersection de l'inférence causale et de l'apprentissage par renforcement. Je suis professeur adjoint à Polytechnique Montréal et membre associé de Mila – Institut québécois d’intelligence artificielle.

Je suis fasciné par la question de l'intelligence artificielle : pouvons-nous construire des machines qui pensent? Je crois humblement que nos tentatives de concevoir des machines pensantes peuvent être un chemin vers une compréhension fondamentale de l'intelligence et de nous-mêmes.

Étudiants actuels

Maîtrise recherche - Polytechnique
Co-superviseur⋅e :

Publications

WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks
Léo Boisvert
Megh Thakkar
Massimo Caccia
Thibault Le Sellier de Chezelles
Alexandre Lacoste
The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recen… (voir plus)t LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress toward capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena/tree/workarena-plus-plus.
Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives.
Brice Rauby
Paul Xing
Jean Provost
Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (voir plus)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives
Brice Rauby
Paul Xing
Jean Provost
Ultrasound localization microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (voir plus)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature. Several deep learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity, or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubble distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by the deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
WorkArena: How Capable are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 29 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (voir plus)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 29 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
Pruning Sparse Tensor Neural Networks Enables Deep Learning for 3D Ultrasound Localization Microscopy
Brice Rauby
Paul Xing
Jonathan Por'ee
Jean Provost
Ultrasound Localization Microscopy (ULM) is a non-invasive technique that allows for the imaging of micro-vessels in vivo, at depth and with… (voir plus) a resolution on the order of ten microns. ULM is based on the sub-resolution localization of individual microbubbles injected in the bloodstream. Mapping the whole angioarchitecture requires the accumulation of microbubbles trajectories from thousands of frames, typically acquired over a few minutes. ULM acquisition times can be reduced by increasing the microbubble concentration, but requires more advanced algorithms to detect them individually. Several deep learning approaches have been proposed for this task, but they remain limited to 2D imaging, in part due to the associated large memory requirements. Herein, we propose to use sparse tensor neural networks to reduce memory usage in 2D and to improve the scaling of the memory requirement for the extension of deep learning architecture to 3D. We study several approaches to efficiently convert ultrasound data into a sparse format and study the impact of the associated loss of information. When applied in 2D, the sparse formulation reduces the memory requirements by a factor 2 at the cost of a small reduction of performance when compared against dense networks. In 3D, the proposed approach reduces memory requirements by two order of magnitude while largely outperforming conventional ULM in high concentration settings. We show that Sparse Tensor Neural Networks in 3D ULM allow for the same benefits as dense deep learning based method in 2D ULM i.e. the use of higher concentration in silico and reduced acquisition time.
The Unsolved Challenges of LLMs as Generalist Web Agents: A Case Study
Rim Assouel
Tom Marty
Massimo Caccia
Issam Hadj Laradji
Sai Rajeswar
Hector Palacios
David Vazquez
Alexandre Lacoste