Portrait de Martin Vallières

Martin Vallières

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur adjoint, Université Sherbrooke, Département d'informatique
Sujets de recherche
Apprentissage automatique médical

Biographie

Martin Vallières est professeur adjoint au Département d'informatique de l'Université de Sherbrooke et titulaire d'une chaire en IA Canada-CIFAR depuis avril 2020. Il a obtenu un doctorat en physique médicale de l'Université McGill en 2017, et a suivi une formation postdoctorale en France et aux États-Unis en 2018 et 2019. Il est expert dans le domaine de la radiomique et de l'apprentissage automatique en oncologie. Au cours de sa carrière, il a développé de multiples modèles de prédiction pour différents types de cancer. Son principal intérêt de recherche consiste désormais en la modélisation à base de graphes de données médicales hétérogènes pour améliorer la médecine de précision.

Étudiants actuels

Doctorat - Université de Sherbrooke
Superviseur⋅e principal⋅e :
Doctorat - Université de Sherbrooke
Superviseur⋅e principal⋅e :

Publications

Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
Elizabeth George
Elizabeth Flagg
Kuan-chun Chang
H. Bai
H. Aerts
D. Reardon
R.Y. Huang
BACKGROUND AND PURPOSE: Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of t… (voir plus)reatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy. MATERIALS AND METHODS: Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (n = 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (n = 60–74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (n = 29–43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points. RESULTS: The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index  = 0.472–0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692–0.750) and progression-free survival (concordance index = 0.680–0.715). CONCLUSIONS: A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.