Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes. Yet, studying these effects in real-w… (voir plus)orld settings at scale is ethically and logistically impractical, highlighting a need for simulation tools that can model these dynamics in controlled settings to enable experimentation with possible defenses. We present a simulation environment designed to address this. We elaborate upon the Concordia framework that simulates offline, `real life' activity by adding online interactions to the simulation through social media with the integration of a Mastodon server. Through a variety of means we then improve simulation efficiency and information flow, and add a set of measurement tools, particularly longitudinal surveys of the agents' political positions. We demonstrate the simulator with a tailored example of how partisan manipulation of agents can affect election results.
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes. Yet, studying these effects in real-w… (voir plus)orld settings at scale is ethically and logistically impractical, highlighting a need for simulation tools that can model these dynamics in controlled settings to enable experimentation with possible defenses. We present a simulation environment designed to address this. We elaborate upon the Concordia framework that simulates offline, `real life' activity by adding online interactions to the simulation through social media with the integration of a Mastodon server. Through a variety of means we then improve simulation efficiency and information flow, and add a set of measurement tools, particularly longitudinal surveys of the agents' political positions. We demonstrate the simulator with a tailored example of how partisan manipulation of agents can affect election results.
It is widely known that AI is vulnerable to adversarial examples, from pixel perturbations to jailbreaks. We propose that there is a key, ea… (voir plus)sier class of problems that is also still unsolved: failures of safety to generalize over structure, despite semantic equivalence. We demonstrate this vulnerability by showing how recent AI systems are differently vulnerable both to multi-turn and multi-image attacks, compared to their single-turn and single-image counterparts with equivalent meaning. We suggest this is the same class of vulnerability as that found in yet unconnected threads of the literature: vulnerabilities to low-resource languages and indefensibility of strongly superhuman Go AIs to cyclic attacks. When viewed together, these reveal a common picture: models that are not only vulnerable to attacks, but vulnerable to attacks with near identical meaning in their benign and harmful components both, and only different in structure. In contrast to attacks with identical benign input (e.g., pictures that look like cats) but unknown semanticity of the harmful component (e.g., diverse noise that is all unintelligible to humans), these represent a class of attacks where semantic understanding and defense against one version should guarantee defense against others—yet current AI safety measures do not. This vulnerability represents a necessary but not sufficient condition towards defending against attacks whose harmful component has arbitrary semanticity. Consequently, by building on the data and approaches we highlight, we frame an intermediate problem for AI safety to solve, that represents a critical checkpoint towards safe AI while being far more tractable than trying to solve it directly and universally.
It is widely known that AI is vulnerable to adversarial examples, from pixel perturbations to jailbreaks. We propose that there is a key, ea… (voir plus)sier class of problems that is also still unsolved: failures of safety to generalize over structure, despite semantic equivalence. We demonstrate this vulnerability by showing how recent AI systems are differently vulnerable both to multi-turn and multi-image attacks, compared to their single-turn and single-image counterparts with equivalent meaning. We suggest this is the same class of vulnerability as that found in yet unconnected threads of the literature: vulnerabilities to low-resource languages and indefensibility of strongly superhuman Go AIs to cyclic attacks. When viewed together, these reveal a common picture: models that are not only vulnerable to attacks, but vulnerable to attacks with near identical meaning in their benign and harmful components both, and only different in structure. In contrast to attacks with identical benign input (e.g., pictures that look like cats) but unknown semanticity of the harmful component (e.g., diverse noise that is all unintelligible to humans), these represent a class of attacks where semantic understanding and defense against one version should guarantee defense against others—yet current AI safety measures do not. This vulnerability represents a necessary but not sufficient condition towards defending against attacks whose harmful component has arbitrary semanticity. Consequently, by building on the data and approaches we highlight, we frame an intermediate problem for AI safety to solve, that represents a critical checkpoint towards safe AI while being far more tractable than trying to solve it directly and universally.
Large Language Models have been extensively studied for their vulnerabilities, particularly in the context of adversarial attacks. However, … (voir plus)the emergence of Vision Language Models introduces new modalities of risk that have not yet been thoroughly explored, especially when processing multiple images simultaneously. In this paper, we introduce two black-box jailbreak methods that leverage multi-image inputs to uncover vulnerabilities in these models. We present a new safety evaluation dataset for multimodal LLMs called MultiBench, which is composed of these jailbreak methods. These methods can easily be applied and evaluated using our toolkit. We test these methods against six safety aligned frontier models from Google, OpenAI, and Anthropic, revealing significant safety vulnerabilities. Our findings suggest that even the most powerful language models remain vulnerable against compositional adversarial attacks, specifically those composed of multiple images.
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallu… (voir plus)cinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.
Recent large language models (LLMs) have been shown to be effective for misinformation detection. However, the choice of LLMs for experiment… (voir plus)s varies widely, leading to uncertain conclusions. In particular, GPT-4 is known to be strong in this domain, but it is closed source, potentially expensive, and can show instability between different versions. Meanwhile, alternative LLMs have given mixed results. In this work, we show that Zephyr-7b presents a consistently viable alternative, overcoming key limitations of commonly used approaches like Llama-2 and GPT-3.5. This provides the research community with a solid open-source option and shows open-source models are gradually catching up on this task. We then highlight how GPT-3.5 exhibits unstable performance, such that this very widely used model could provide misleading results in misinformation detection. Finally, we validate new tools including approaches to structured output and the latest version of GPT-4 (Turbo), showing they do not compromise performance, thus unlocking them for future research and potentially enabling more complex pipelines for misinformation mitigation.
Recent large language models (LLMs) have been shown to be effective for misinformation detection. However, the choice of LLMs for experiment… (voir plus)s varies widely, leading to uncertain conclusions. In particular, GPT-4 is known to be strong in this domain, but it is closed source, potentially expensive, and can show instability between different versions. Meanwhile, alternative LLMs have given mixed results. In this work, we show that Zephyr-7b presents a consistently viable alternative, overcoming key limitations of commonly used approaches like Llama-2 and GPT-3.5. This provides the research community with a solid open-source option and shows open-source models are gradually catching up on this task. We then highlight how GPT-3.5 exhibits unstable performance, such that this very widely used model could provide misleading results in misinformation detection. Finally, we validate new tools including approaches to structured output and the latest version of GPT-4 (Turbo), showing they do not compromise performance, thus unlocking them for future research and potentially enabling more complex pipelines for misinformation mitigation.