Portrait de Joelle Pineau

Joelle Pineau

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Co-directrice générale, Meta AI (FAIR - Facebook AI Research)
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Traitement du langage naturel

Biographie

Joelle Pineau est professeure agrégée et titulaire d’une bourse William Dawson à l'Université McGill, où elle codirige le Laboratoire de raisonnement et d'apprentissage. Elle est membre du corps professoral de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Elle est également vice-présidente de la recherche en IA chez Meta (anciennement Facebook), où elle dirige l'équipe FAIR (Fundamental AI Research). Elle détient un baccalauréat ès sciences en génie de l'Université de Waterloo et une maîtrise et un doctorat en robotique de l'Université Carnegie Mellon.

Ses recherches sont axées sur le développement de nouveaux modèles et algorithmes pour la planification et l'apprentissage dans des domaines complexes partiellement observables. Elle travaille également sur l'application de ces algorithmes à des problèmes complexes en robotique, dans les soins de santé, dans les jeux et dans les agents conversationnels. Elle est membre du comité de rédaction du Journal of Artificial Intelligence Research et du Journal of Machine Learning Research, et est actuellement présidente de l'International Machine Learning Society. Elle a été lauréate de la bourse commémorative E. W. R. Steacie du Conseil de recherches en sciences naturelles et en génie (CRSNG) 2018 et du Prix du Gouverneur général pour l'innovation 2019. Elle est membre de l'Association pour l'avancement de l'intelligence artificielle (AAAI), membre principal de l'Institut canadien de recherches avancées (CIFAR) et membre de la Société royale du Canada.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Stagiaire de recherche - UdeM
Co-superviseur⋅e :

Publications

Biomedical Research and Informatics Living Laboratory for Innovative Advances of New Technologies in Community Mobility Rehabilitation: Protocol for Evaluation and Rehabilitation of Mobility Across Continuums of Care
Sara Ahmed
P. Archambault
Claudine Auger
Joyce Phua Pau Fung
Eva Kehayia
Anouk Lamontagne
Annette Majnemer
Sylvie Nadeau
Alain Ptito
B. Swaine
Background Rapid advances in technologies over the past 10 years have enabled large-scale biomedical and psychosocial rehabilitation researc… (voir plus)h to improve the function and social integration of persons with physical impairments across the lifespan. The Biomedical Research and Informatics Living Laboratory for Innovative Advances of New Technologies (BRILLIANT) in community mobility rehabilitation aims to generate evidence-based research to improve rehabilitation for individuals with acquired brain injury (ABI). Objective This study aims to (1) identify the factors limiting or enhancing mobility in real-world community environments (public spaces, including the mall, home, and outdoors) and understand their complex interplay in individuals of all ages with ABI and (2) customize community environment mobility training by identifying, on a continuous basis, the specific rehabilitation strategies and interventions that patient subgroups benefit from most. Here, we present the research and technology plan for the BRILLIANT initiative. Methods A cohort of individuals, adults and children, with ABI (N=1500) will be recruited. Patients will be recruited from the acute care and rehabilitation partner centers within 4 health regions (living labs) and followed throughout the continuum of rehabilitation. Participants will also be recruited from the community. Biomedical, clinician-reported, patient-reported, and brain imaging data will be collected. Theme 1 will implement and evaluate the feasibility of collecting data across BRILLIANT living labs and conduct predictive analyses and artificial intelligence (AI) to identify mobility subgroups. Theme 2 will implement, evaluate, and identify community mobility interventions that optimize outcomes for mobility subgroups of patients with ABI. Results The biomedical infrastructure and equipment have been established across the living labs, and development of the clinician- and patient-reported outcome digital solutions is underway. Recruitment is expected to begin in May 2022. Conclusions The program will develop and deploy a comprehensive clinical and community-based mobility-monitoring system to evaluate the factors that result in poor mobility, and develop personalized mobility interventions that are optimized for specific patient subgroups. Technology solutions will be designed to support clinicians and patients to deliver cost-effective care and the right intervention to the right person at the right time to optimize long-term functional potential and meaningful participation in the community. International Registered Report Identifier (IRRID) PRR1-10.2196/12506
Biomedical Research & Informatics Living Laboratory for Innovative Advances of New Technologies in Community Mobility Rehabilitation: Protocol for a longitudinal evaluation of mobility outcomes (Preprint)
Sara Ahmed
Philippe Archambault
Claudine Auger
Joyce Fung
Eva Kehayia
Anouk Lamontagne
Annette Majnemer
Sylvie Nadeau
Alain Ptito
Bonnie Swaine
UNSTRUCTURED The Biomedical Research and Informatics Living Laboratory for Innovative Advances of New Technologies in Community Mobility Re… (voir plus)habilitation (BRILLIANT) program to provide evidence-based research to improve rehabilitation for individuals with Acquired Brain Injury (ABI: traumatic brain injury [TBI], cerebral palsy-fetal/perinatal brain injury, and stroke). The vision of the BRILLIANT program is to optimize mobility of persons with ABI across the lifespan. The program will develop and deploy a comprehensive clinical and community based mobility monitoring system to evaluate the factors that result in poor mobility, and develop personalized mobility interventions that are optimized for specific patient sub-groups. These innovations will be used by front-line clinicians to deliver cost-effective care; the right intervention to the right person at the right time, accounting for long-term functional potential and meaningful participation in the community.
A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions
Anthony GX-Chen
Veronica Chelu
Estimating value functions is a core component of reinforcement learning algorithms. Temporal difference (TD) learning algorithms use bootst… (voir plus)rapping, i.e. they update the value function toward a learning target using value estimates at subsequent time-steps. Alternatively, the value function can be updated toward a learning target constructed by separately predicting successor features (SF)—a policy-dependent model—and linearly combining them with instantaneous rewards. We focus on bootstrapping targets used when estimating value functions, and propose a new backup target, the ?-return mixture, which implicitly combines value-predictive knowledge (used by TD methods) with (successor) feature-predictive knowledge—with a parameter ? capturing how much to rely on each. We illustrate that incorporating predictive knowledge through an ??-discounted SF model makes more efficient use of sampled experience, compared to either extreme, i.e. bootstrapping entirely on the value function estimate, or bootstrapping on the product of separately estimated successor features and instantaneous reward models. We empirically show this approach leads to faster policy evaluation and better control performance, for tabular and nonlinear function approximations, indicating scalability and generality.
Robust Policy Learning over Multiple Uncertainty Sets
Annie Xie
Shagun Sodhani
Chelsea Finn
Amy Zhang
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments. While system identification methods prov… (voir plus)ide a way to infer the variation from online experience, they can fail in settings where fast identification is not possible. Another dominant approach is robust RL which produces a policy that can handle worst-case scenarios, but these methods are generally designed to achieve robustness to a single uncertainty set that must be specified at train time. Towards a more general solution, we formulate the multi-set robustness problem to learn a policy robust to different perturbation sets. We then design an algorithm that enjoys the benefits of both system identification and robust RL: it reduces uncertainty where possible given a few interactions, but can still act robustly with respect to the remaining uncertainty. On a diverse set of control tasks, our approach demonstrates improved worst-case performance on new environments compared to prior methods based on system identification and on robust RL alone.
The Curious Case of Absolute Position Embeddings
Koustuv Sinha
Amirhossein Kazemnejad
Dieuwke Hupkes
Adina Williams
Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems
Ekaterina Kochmar
Dung D. Vu
Robert Belfer
Varun Gupta
Iulian V. Serban
Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems
Ekaterina Kochmar
Dung D. Vu
Robert Belfer
Varun Gupta
Iulian V. Serban
SPeCiaL: Self-Supervised Pretraining for Continual Learning
Lucas Caccia
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
Manan Tomar
Amy Zhang
Roberto Calandra
Matthew E. Taylor
Accuracy and generalization of dynamics models is key to the success of model-based reinforcement learning (MBRL). As the complexity of task… (voir plus)s increases, so does the sample inefficiency of learning accurate dynamics models. However, many complex tasks also exhibit sparsity in the dynamics, i.e., actions have only a local effect on the system dynamics. In this paper, we exploit this property with a causal invariance perspective in the single-task setting, introducing a new type of state abstraction called \textit{model-invariance}. Unlike previous forms of state abstractions, a model-invariance state abstraction leverages causal sparsity over state variables. This allows for compositional generalization to unseen states, something that non-factored forms of state abstractions cannot do. We prove that an optimal policy can be learned over this model-invariance state abstraction and show improved generalization in a simple toy domain. Next, we propose a practical method to approximately learn a model-invariant representation for complex domains and validate our approach by showing improved modelling performance over standard maximum likelihood approaches on challenging tasks, such as the MuJoCo-based Humanoid. Finally, within the MBRL setting we show strong performance gains with respect to sample efficiency across a host of other continuous control tasks.
Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program)
Philippe Vincent‐lamarre
Koustuv Sinha
Vincent Larivière
Alina Beygelzimer
Florence D'alche-buc
E. Fox
Learning Robust State Abstractions for Hidden-Parameter Block MDPs
Amy Zhang
Shagun Sodhani
A Simple and Effective Model for Multi-Hop Question Generation
Jimmy Lei Ba
Jamie Ryan Kiros
Geoffrey E Hin-602
Peter W. Battaglia
Jessica Blake
Chandler Hamrick
Vic-613 tor Bapst
Alvaro Sanchez
Vinicius Zambaldi
M. Malinowski
Andrea Tacchetti
David Raposo
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam … (voir 72 de plus)
Girish Sastry
Koustuv Sinha
Shagun Sodhani
Jin Dong
William L. Hamilton
Clutrr
Nitish Srivastava
Geoffrey Hinton
Alex Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov. 2014
Gabriel Stanovsky
Julian Michael
Luke Zettlemoyer
Dan Su
Yan Xu
Wenliang Dai
Ziwei Ji
Tiezheng Yu
Minghao Tu
Kevin Huang
Guangtao Wang
Jing Huang
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin. 2017
Attention
Petar Veliˇckovi´c
Guillem Cucurull
Arantxa Casanova
Pietro Lio’
Johannes Welbl
Pontus Stenetorp
Yonghui Wu
Mike Schuster
Quoc Zhifeng Chen
Mohammad Le
Wolfgang Norouzi
Macherey
M. Krikun
Yuan Cao
Qin Gao
William W. Cohen
Jianxing Yu
Xiaojun Quan
Qinliang Su
Jian Yin
Yuyu Zhang
Hanjun Dai
Zornitsa Kozareva
Chen Zhao
Chenyan Xiong
Corby Rosset
Xia
Paul Song
Bennett Saurabh
Tiwary
Yao Zhao
Xiaochuan Ni
Yuanyuan Ding
Qingyu Zhou
Nan Yang
Furu Wei
Chuanqi Tan
Previous research on automated question gen-001 eration has almost exclusively focused on gen-002 erating factoid questions whose answers ca… (voir plus)n 003 be extracted from a single document. How-004 ever, there is an increasing interest in develop-005 ing systems that are capable of more complex 006 multi-hop question generation (QG), where an-007 swering the question requires reasoning over 008 multiple documents. In this work, we pro-009 pose a simple and effective approach based on 010 the transformer model for multi-hop QG. Our 011 approach consists of specialized input repre-012 sentations, a supporting sentence classification 013 objective, and training data weighting. Prior 014 work on multi-hop QG considers the simpli-015 fied setting of shorter documents and also ad-016 vocates the use of entity-based graph struc-017 tures as essential ingredients in model design. 018 On the contrary, we showcase that our model 019 can scale to the challenging setting of longer 020 documents as input, does not rely on graph 021 structures, and substantially outperforms the 022 state-of-the-art approaches as measured by au-023 tomated metrics and human evaluation. 024