Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (voir plus)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (voir plus)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (voir plus)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
Spinal cord gray‐matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare… (voir plus) various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.
Spinal cord gray‐matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare… (voir plus) various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.
Spinal cord gray‐matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare… (voir plus) various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.
Diffusion magnetic resonance imaging reveals tract‐specific microstructural correlates of electrophysiological impairments in non‐myelopathic and myelopathic spinal cord compression
Non‐myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially ir… (voir plus)reversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract‐specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM.