Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controllin… (voir plus)g for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controllin… (voir plus)g for sources of biological variation such as subject’s sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
The cross-sectional area (CSA) of the spinal cord (SC) computed from its segmentation is a relevant clinical biomarker for the diagnosis and… (voir plus) monitoring of cord compression and atrophy. One key limitation of existing automatic methods is that their SC segmentations depend on the MRI contrast, resulting in different CSA across contrasts. Furthermore, these methods rely on CNNs, leaving a gap in the literature for exploring the performance of modern deep learning (DL) architectures. In this study, we extend our recent work \cite{Bdard2023TowardsCS} by evaluating the contrast-agnostic SC segmentation capabilities of different classes of DL architectures, namely, ConvNeXt, vision transformers (ViTs), and hierarchical ViTs. We compared 7 different DL models using the open-source \textit{Spine Generic} Database of healthy participants
Objective: Automatic and robust characterization of spinal cord shape from MRI images is relevant to assess the severity of spinal cord comp… (voir plus)ression in degenerative cervical myelopathy (DCM) and to guide therapeutic strategy. Despite its popularity, the maximum spinal cord compression (MSCC) index has practical limitations to objectively assess the severity of cord compression. Firstly, it is computed by normalizing the anteroposterior cord diameter by that above and below the level of compression, but it does not account for the fact that the spinal cord itself varies in size along the superior-inferior axis, making this MSCC sensitive to the level of compression. Secondly, spinal cord shape varies across individuals, making MSCC also sensitive to the size and shape of every individual. Thirdly, MSCC is typically computed by the expert-rater on a single sagittal slice, which is time-consuming and prone to inter-rater variability. In this study, we propose a fully automatic pipeline to compute MSCC. Methods: We extended the traditional MSCC (based on the anteroposterior diameter) to other shape metrics (transverse diameter, area, eccentricity, and solidity), and proposed a normalization strategy using a database of healthy adults (n=203) to address the variability of the spinal cord anatomy between individuals. We validated the proposed method in a cohort of DCM patients (n=120) with manually derived morphometric measures and predicted the therapeutic decision (operative/conservative) using a stepwise binary logistic regression including demographics, clinical scores, and electrophysiological assessment. Results: The automatic and normalized MSCC measures significantly correlated with clinical scores and predicted the therapeutic decision with higher accuracy than the manual MSCC. Results show that the sensory dysfunction of the upper extremities (mJOA subscore), the presence of myelopathy and the proposed MRI-based normalized morphometric measures were significant predictors of the therapeutic decision. The model yielded an area under the curve of the receiver operating characteristic of 80%. Conclusion: The study introduced an automatic method for computation of normalized MSCC measures of cord compression from MRI scans, which is an important step towards better informed therapeutic decisions in DCM patients. The method is open-source and available in the Spinal Cord Toolbox v6.0.
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing cr… (voir plus)itical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
Abstract Measures of spinal cord morphometry computed from magnetic resonance images serve as relevant prognostic biomarkers for a range of … (voir plus)spinal cord pathologies, including traumatic and non-traumatic spinal cord injury and neurodegenerative diseases. However, interpreting these imaging biomarkers is difficult due to considerable intra- and inter-subject variability. Yet, there is no clear consensus on a normalization method that would help reduce this variability and more insights into the distribution of these morphometrics are needed. In this study, we computed a database of normative values for six commonly used measures of spinal cord morphometry: cross-sectional area, anteroposterior diameter, transverse diameter, compression ratio, eccentricity, and solidity. Normative values were computed from a large open-access dataset of healthy adult volunteers (N = 203) and were brought to the common space of the PAM50 spinal cord template using a newly proposed normalization method based on linear interpolation. Compared to traditional image-based registration, the proposed normalization approach does not involve image transformations and, therefore, does not introduce distortions of spinal cord anatomy. This is a crucial consideration in preserving the integrity of the spinal cord anatomy in conditions such as spinal cord injury. This new morphometric database allows researchers to normalize based on sex and age, thereby minimizing inter-subject variability associated with demographic and biological factors. The proposed methodology is open-source and accessible through the Spinal Cord Toolbox (SCT) v6.0 and higher.
Abstract Precise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the … (voir plus)spinal cord. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access 3T MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets. Each output class corresponds to a spinal level. The method was tested on 3T T2-weighted images from three datasets unseen during training to assess inter-site, inter-session, and inter-resolution variability. The test Dice score was 0.67 ± 0.16 (mean ± standard deviation across testing images and rootlets levels), suggesting a good performance. The method also demonstrated low inter-vendor and inter-site variability (coefficient of variation ≤ 1.41%), as well as low inter-session variability (coefficient of variation ≤ 1.30%), indicating stable predictions across different MRI vendors, sites, and sessions. The proposed methodology is open-source and readily available in the Spinal Cord Toolbox (SCT) v6.2 and higher.
Abstract Precise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the … (voir plus)spinal cord. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access 3T MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets. Each output class corresponds to a spinal level. The method was tested on 3T T2-weighted images from three datasets unseen during training to assess inter-site, inter-session, and inter-resolution variability. The test Dice score was 0.67 ± 0.16 (mean ± standard deviation across testing images and rootlets levels), suggesting a good performance. The method also demonstrated low inter-vendor and inter-site variability (coefficient of variation ≤ 1.41%), as well as low inter-session variability (coefficient of variation ≤ 1.30%), indicating stable predictions across different MRI vendors, sites, and sessions. The proposed methodology is open-source and readily available in the Spinal Cord Toolbox (SCT) v6.2 and higher.
Abstract Measures of spinal cord morphometry computed from magnetic resonance images serve as relevant prognostic biomarkers for a range of … (voir plus)spinal cord pathologies, including traumatic and non-traumatic spinal cord injury and neurodegenerative diseases. However, interpreting these imaging biomarkers is difficult due to considerable intra- and inter-subject variability. Yet, there is no clear consensus on a normalization method that would help reduce this variability and more insights into the distribution of these morphometrics are needed. In this study, we computed a database of normative values for six commonly used measures of spinal cord morphometry: cross-sectional area, anteroposterior diameter, transverse diameter, compression ratio, eccentricity, and solidity. Normative values were computed from a large open-access dataset of healthy adult volunteers (N = 203) and were brought to the common space of the PAM50 spinal cord template using a newly proposed normalization method based on linear interpolation. Compared to traditional image-based registration, the proposed normalization approach does not involve image transformations and, therefore, does not introduce distortions of spinal cord anatomy. This is a crucial consideration in preserving the integrity of the spinal cord anatomy in conditions such as spinal cord injury. This new morphometric database allows researchers to normalize based on sex and age, thereby minimizing inter-subject variability associated with demographic and biological factors. The proposed methodology is open-source and accessible through the Spinal Cord Toolbox (SCT) v6.0 and higher.
Abstract Measures of spinal cord morphometry computed from magnetic resonance images serve as relevant prognostic biomarkers for a range of … (voir plus)spinal cord pathologies, including traumatic and non-traumatic spinal cord injury and neurodegenerative diseases. However, interpreting these imaging biomarkers is difficult due to considerable intra- and inter-subject variability. Yet, there is no clear consensus on a normalization method that would help reduce this variability and more insights into the distribution of these morphometrics are needed. In this study, we computed a database of normative values for six commonly used measures of spinal cord morphometry: cross-sectional area, anteroposterior diameter, transverse diameter, compression ratio, eccentricity, and solidity. Normative values were computed from a large open-access dataset of healthy adult volunteers (N = 203) and were brought to the common space of the PAM50 spinal cord template using a newly proposed normalization method based on linear interpolation. Compared to traditional image-based registration, the proposed normalization approach does not involve image transformations and, therefore, does not introduce distortions of spinal cord anatomy. This is a crucial consideration in preserving the integrity of the spinal cord anatomy in conditions such as spinal cord injury. This new morphometric database allows researchers to normalize based on sex and age, thereby minimizing inter-subject variability associated with demographic and biological factors. The proposed methodology is open-source and accessible through the Spinal Cord Toolbox (SCT) v6.0 and higher.
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (voir plus)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (voir plus)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.