Portrait de Jacob Danovitch n'est pas disponible

Jacob Danovitch

Alumni

Publications

TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entiti… (voir plus)es over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
Matthias Fey
Weihua Hu
Emanuele Rossi
Jure Leskovec
Michael M. Bronstein
We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and r… (voir plus)obust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/.
Fast and Attributed Change Detection on Dynamic Graphs with Density of States
The Surprising Performance of Simple Baselines for Misinformation Detection
As social media becomes increasingly prominent in our day to day lives, it is increasingly important to detect informative content and preve… (voir plus)nt the spread of disinformation and unverified rumours. While many sophisticated and successful models have been proposed in the literature, they are often compared with older NLP baselines such as SVMs, CNNs, and LSTMs. In this paper, we examine the performance of a broad set of modern transformer-based language models and show that with basic fine-tuning, these models are competitive with and can even significantly outperform recently proposed state-of-the-art methods. We present our framework as a baseline for creating and evaluating new methods for misinformation detection. We further study a comprehensive set of benchmark datasets, and discuss potential data leakage and the need for careful design of the experiments and understanding of datasets to account for confounding variables. As an extreme case example, we show that classifying only based on the first three digits of tweet ids, which contain information on the date, gives state-of-the-art performance on a commonly used benchmark dataset for fake news detection –Twitter16. We provide a simple tool to detect this problem and suggest steps to mitigate it in future datasets.
ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents
Given the global scale of COVID-19 and the flood of social media content related to it, how can we find informative discussions? We present … (voir plus)Gapformer, which effectively classifies content as informative or not. It reformulates the problem as graph classification, drawing on not only the tweet but connected webpages and entities. We leverage a pre-trained language model as well as the connections between nodes to learn a pooled representation for each document network. We show it outperforms several competitive baselines and present ablation studies supporting the benefit of the linked information. Code is available on Github.