Portrait de Emmanuel Bengio n'est pas disponible

Emmanuel Bengio

Alumni

Publications

Adaptive teachers for amortized samplers
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnorma… (voir plus)lized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions. The Teacher, an auxiliary behavior model, is trained to sample high-error regions of the Student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage.
Towards Improving Exploration through Sibling Augmented GFlowNets.
Towards Improving Exploration through Sibling Augmented GFlowNets
Exploration is a key factor for the success of an active learning agent, especially when dealing with sparse extrinsic terminal rewards and … (voir plus)long trajectories. We introduce Sibling Augmented Generative Flow Networks (SA-GFN), a novel framework designed to enhance exploration and training efficiency of Generative Flow Networks (GFlowNets). SA-GFN uses a decoupled dual network architecture, comprising of a main Behavior Network and an exploratory Sibling Network, to enable a diverse exploration of the underlying distribution using intrinsic rewards. Inspired by the ideas on exploration from reinforcement learning, SA-GFN provides a general-purpose exploration and learning paradigm that integrates with multiple GFlowNet training objectives and is especially helpful for exploration over a wide range of sparse or low reward distributions and task structures. An extensive set of experiments across a diverse range of tasks, reward structures and trajectory lengths, along with a thorough set of ablations, demonstrate the superior performance of SA-GFN in terms of exploration efficacy and convergence speed as compared to the existing methods. In addition, SA-GFN's versatility and compatibility with different GFlowNet training objectives and intrinsic reward methods underscores its broad applicability in various problem domains.
Investigating Generalization Behaviours of Generative Flow Networks
Generative Flow Networks (GFlowNets, GFNs) are a generative framework for learning unnormalized probability mass functions over discrete spa… (voir plus)ces. Since their inception, GFlowNets have proven to be useful for learning generative models in applications where the majority of the discrete space is unvisited during training. This has inspired some to hypothesize that GFlowNets, when paired with deep neural networks (DNNs), have favourable generalization properties. In this work, we empirically verify some of the hypothesized mechanisms of generalization of GFlowNets. In particular, we find that the functions that GFlowNets learn to approximate have an implicit underlying structure which facilitate generalization. We also find that GFlowNets are sensitive to being trained offline and off-policy; however, the reward implicitly learned by GFlowNets is robust to changes in the training distribution.
SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints
M. Cretu
Charles Harris
Ilia Igashov
Arne Schneuing
Marwin Segler
Bruno Correia
Pietro Lio
Generative models see increasing use in computer-aided drug design. However, while performing well at capturing distributions of molecular m… (voir plus)otifs, they often produce synthetically inaccessible molecules. To address this, we introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and buyable reactants to sequentially build new molecules. By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities. We evaluate our approach using synthetic accessibility scores and an independent retrosynthesis tool to assess the synthesizability of our compounds, and motivate the choice of GFlowNets through considerable improvement in sample diversity compared to baselines. Additionally, we identify challenges with reaction encodings that can complicate traversal of the MDP in the backward direction. To address this, we introduce various strategies for learning the GFlowNet backward policy and thus demonstrate how additional constraints can be integrated into the GFlowNet MDP framework. This approach enables our model to successfully identify synthesis pathways for previously unseen molecules.
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (voir plus). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (voir plus). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
Improved Off-policy Reinforcement Learning in Biological Sequence Design
Alex Hern'andez-Garc'ia
Jinkyoo Park
Designing biological sequences with desired properties is a significant challenge due to the combinatorially vast search space and the high … (voir plus)cost of evaluating each candidate sequence. To address these challenges, reinforcement learning (RL) methods, such as GFlowNets, utilize proxy models for rapid reward evaluation and annotated data for policy training. Although these approaches have shown promise in generating diverse and novel sequences, the limited training data relative to the vast search space often leads to the misspecification of proxy for out-of-distribution inputs. We introduce
Adaptive teachers for amortized samplers
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnorma… (voir plus)lized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the \teacher) to guide the training of the primary amortized sampler (the \student). The \teacher, an auxiliary behavior model, is trained to sample high-loss regions of the \student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage. Source code is available at https://github.com/alstn12088/adaptive-teacher.
Adaptive teachers for amortized samplers
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnorma… (voir plus)lized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the \teacher) to guide the training of the primary amortized sampler (the \student). The \teacher, an auxiliary behavior model, is trained to sample high-loss regions of the \student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage. Source code is available at https://github.com/alstn12088/adaptive-teacher.
Amortizing intractable inference in diffusion models for vision, language, and control
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (voir plus)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
QGFN: Controllable Greediness with Action Values
Generative Flow Networks (GFlowNets; GFNs) are a family of energy-based generative methods for combinatorial objects, capable of generating … (voir plus)diverse and high-utility samples. However, consistently biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate,