Portrait de Benjamin Prud'homme

Benjamin Prud'homme

Vice-président, Politiques publiques, sécurité et affaires mondiales, Équipe de direction

Biographie

Benjamin Prud’homme est vice-président, Politiques publiques, sécurité et affaires mondiales de Mila. À ce titre, il dirige les travaux de Mila sur la gouvernance de l’IA et les politiques publiques, l’apprentissage et la littératie, l’IA éthique et responsable, ainsi que son portefeuille de projets appliqués « AI for Good ».

Ses domaines d’intérêt comprennent la gouvernance de l’IA, avec un accent particulier sur les forums multilatéraux, les droits de la personne et l’inclusion des communautés marginalisées dans le cycle de vie des (éco)systèmes d’IA.

Récemment, il a co-édité la publication Mila-UNESCO « Missing Links in AI Governance » (2023) et a été expert pour le groupe de travail de la Commission des Nations Unies sur le développement des capacités en matière d’IA. Il codirige actuellement le projet du Partenariat mondial sur l’IA (GPAI) « Creating Diversity and Gender Equality in AI Ecosystems ».

Il est avocat (Barreau du Québec, 2013) et ancien conseiller du ministre des Affaires étrangères du Canada en matière de droits de la personne et de relations multilatérales. Il siège aux conseils d’administration de l’Association canadienne des libertés civiles et de l’Observatoire québécois des inégalités et il est vice-président de l’Aide juridique de Montréal.

Publications

COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
abhinav sharma
Brooke Struck … (voir 3 de plus)
Martin Weiss
Yun William Yu
COVI White Paper-Version 1.1
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
abhinav sharma
Brooke Struck … (voir 3 de plus)
Martin Weiss
Yun William Yu
The SARS-CoV-2 (Covid-19) pandemic has resulted in significant strain on health care and public health institutions around the world. Contac… (voir plus)t tracing is an essential tool for public health officials and local communities to change the course of the Covid-19 pandemic. Standard manual contact tracing of people infected with Covid-19, while the current gold standard, has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile applications has the potential to shift the paradigm of Covid-19 community spread. Although some countries have deployed centralized tracking systems through either GPS or Bluetooth, more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or in for-profit corporations. Additionally, machine learning methods can be used to circumvent some of the limitations of standard digital tracing by incorporating many clues (including medical conditions, self-reported symptoms, and numerous encounters with people at different risk levels, for different durations and distances) and their uncertainty into a more graded and precise estimation of infection and contagion risk. The estimated risk can be used to provide early risk awareness, personalized recommendations and relevant information to the user and connect them to health services. Finally, the non-identifying data about these risks can inform detailed epidemiological models trained jointly with the machine learning predictor, and these models can provide statistical evidence for the interaction and importance of different factors involved in the transmission of the disease. They can also be used to monitor, evaluate and optimize different health policy and confinement/deconfinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of ‘COVI,’ a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada. Addendum 2020-07-14: The government of Canada has declined to endorse COVI and will be promoting a different app for decentralized contact tracing. In the interest of preventing fragmentation of the app landscape, COVI will therefore not be deployed to end users. We are currently still in the process of finalizing the project, and plan to release our code and models for academic consumption and to make them accessible to other States should they wish to deploy an app based on or inspired by said code and models. University of Ottawa, Mila, Université de Montréal, The Alan Turing Institute, University of Oxford, University of Pennsylvania, McGill University, Borden Ladner Gervais LLP, The Decision Lab, HEC Montréal, Max Planck Institute, Libéo, University of Toronto. Corresponding author general: richard.janda@mcgill.ca Corresponding author for public health: abhinav.sharma@mcgill.ca Corresponding author for privacy: ywyu@math.toronto.edu Corresponding author for machine learning: yoshua.bengio@mila.quebec Corresponding author for user perspective: brooke@thedecisionlab.com Corresponding author for technical implementation: jean-francois.rousseau@libeo.com 1 ar X iv :2 00 5. 08 50 2v 2 [ cs .C R ] 2 7 Ju l 2 02 0