Portrait de Alessandro Sordoni

Alessandro Sordoni

Membre industriel principal
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheur scientifique, Microsoft Research Montréal
Sujets de recherche
Grands modèles de langage (LLM)
Raisonnement
Traitement du langage naturel

Biographie

Je suis chercheur principal à Microsoft Research Montréal. J'ai obtenu un doctorat de l'Université de Montréal sous la direction de Jian-Yun Nie, en étudiant comment représenter efficacement les documents et les requêtes pour la recherche d'information. Présentement, je m’intéresse à l'étude de l'efficacité de l'apprentissage et de la généralisation systématique dans les grands modèles actuels d'apprentissage profond. Mes intérêts s'étendent à l'apprentissage non supervisé et à l'apprentissage à petite échelle, en particulier dans le domaine du langage naturel.

Étudiants actuels

Collaborateur·rice alumni - University of Copenhagen

Publications

Improving Context-Aware Preference Modeling for Language Models
Silviu Pitis
Ziang Xiao
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language pr… (voir plus)esents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Improving Context-Aware Preference Modeling for Language Models
Silviu Pitis
Ziang Xiao
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language pr… (voir plus)esents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Guiding Language Model Reasoning with Planning Tokens
Xinyi Wang
Lucas Caccia
Oleksiy Ostapenko
Xingdi Yuan
William Yang Wang
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks, such as cha… (voir plus)in-of-thought (CoT) reasoning. However, most of the existing approaches to enhance this ability rely heavily on data-driven methods, while neglecting the structural aspects of the model's reasoning capacity. To encourage a more structural generation of CoT steps, we propose a hierarchical generation scheme: we let the LM generate a planning token at the start of each reasoning step, intuitively serving as a high-level plan of the current step, and add their embeddings to the model parameters. Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme. We demonstrate our method's effectiveness by applying it to three different LLMs, showing notable accuracy improvements across three math word problem datasets and one multihop QA dataset with respect to standard fine-tuning baselines.
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on sel… (voir plus)f-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Oleksiy Ostapenko
Zhan Su
Edoardo Ponti
Matheus Pereira
Lucas Caccia
Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (voir plus)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (voir plus)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (voir plus)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Oleksiy Ostapenko
Zhan Su
Edoardo Ponti
Matheus Pereira
Lucas Caccia
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trai… (voir plus)ned adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on sel… (voir plus)f-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to… (voir plus) improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to… (voir plus) improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.