Portrait de Aishwarya Agrawal

Aishwarya Agrawal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Chercheuse scientifique, Google DeepMind, Montréal
Sujets de recherche
Apprentissage multimodal
Apprentissage profond
Traitement du langage naturel
Vision par ordinateur

Biographie

Aishwarya Agrawal est professeure adjointe au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Elle est également titulaire d'une chaire en IA Canada-CIFAR et membre académique principale de Mila – Institut québécois d’intelligence artificielle.

Elle passe également un jour par semaine chez DeepMind en tant que chercheuse scientifique; d'août 2019 à décembre 2020, elle y a été chercheuse scientifique à plein temps. Détentrice d’un baccalauréat en génie électrique avec une mineure en informatique, Aishwarya a obtenu en août 2019 un doctorat de Georgia Tech, en travaillant avec Dhruv Batra et Devi Parikh. Ses intérêts de recherche se situent à l'intersection des sous-disciplines suivantes de l'IA : vision par ordinateur, apprentissage profond et traitement du langage naturel, avec un accent sur le développement de systèmes d'IA capables de « voir » (c'est-à-dire de comprendre le contenu d'une image : qui, quoi, où, qui fait quoi ?) et de « parler » (c'est-à-dire de communiquer cette compréhension aux humains en langage naturel libre).

Elle a reçu plusieurs prix et bourses, dont le prix des chaires en IA Canada-CIFAR, le prix de la meilleure thèse de doctorat Sigma Xi 2020 et le prix de la dissertation 2020 du College of Computing de Georgia Tech, la bourse Google 2019 et la bourse Facebook 2019-2020 (toutes deux refusées en raison de l'obtention du diplôme), ainsi que la bourse d’études supérieures NVIDIA 2018-2019. Aishwarya a été l'une des deux finalistes du prix de la meilleure thèse 2019 de l'AAAI / ACM SIGAI. Elle a également été sélectionnée pour les Rising Stars in EECS 2018.

Étudiants actuels

Maîtrise recherche - UdeM
Collaborateur·rice de recherche - University of British Columbia
Maîtrise recherche - UdeM

Publications

Reassessing Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization
Ivana Kaji'c
Emanuele Bugliarello
Elnaz Davoodi
Anita Gergely
Phil Blunsom
Aida Nematzadeh
Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Fine-grained Understanding
Le Zhang
Rabiul Awal
Measuring Progress in Fine-grained Vision-and-Language Understanding
Emanuele Bugliarello
Laurent Sartran
Lisa Anne Hendricks
Aida Nematzadeh
While pretraining on large-scale image–text data from the Web has facilitated rapid progress on many vision-and-language (V&L) tasks, rece… (voir plus)nt work has demonstrated that pretrained models lack “fine-grained” understanding, such as the ability to recognise relationships, verbs, and numbers in images. This has resulted in an increased interest in the community to either develop new benchmarks or models for such capabilities. To better understand and quantify progress in this direction, we investigate four competitive V&L models on four fine-grained benchmarks. Through our analysis, we find that X-VLM (Zeng et al., 2022) consistently outperforms other baselines, and that modelling innovations can impact performance more than scaling Web data, which even degrades performance sometimes. Through a deeper investigation of X-VLM, we highlight the importance of both novel losses and rich data sources for learning fine-grained skills. Finally, we inspect training dynamics, and discover that for some tasks, performance peaks early in training or significantly fluctuates, never converging.
Vision-Language Pretraining: Current Trends and the Future
Damien Teney
Aida Nematzadeh
In the last few years, there has been an increased interest in building multimodal (vision-language) models that are pretrained on larger bu… (voir plus)t noisier datasets where the two modalities (e.g., image and text) loosely correspond to each other (e.g., Lu et al., 2019; Radford et al., 2021). Given a task (such as visual question answering), these models are then often fine-tuned on task-specific supervised datasets. (e.g., Lu et al., 2019; Chen et al.,2020; Tan and Bansal, 2019; Li et al., 2020a,b). In addition to the larger pretraining datasets, the transformer architecture (Vaswani et al., 2017) and in particular self-attention applied to two modalities are responsible for the impressive performance of the recent pretrained models on downstream tasks (Hendricks et al., 2021). In this tutorial, we focus on recent vision-language pretraining paradigms. Our goal is to first provide the background on image–language datasets, benchmarks, and modeling innovations before the multimodal pretraining area. Next we discuss the different family of models used for vision-language pretraining, highlighting their strengths and shortcomings. Finally, we discuss the limits of vision-language pretraining through statistical learning, and the need for alternative approaches such as causal representation learning.
Vision-Language Pretraining: Current Trends and the Future
Damien Teney
Aida Nematzadeh
In the last few years, there has been an increased interest in building multimodal (vision-language) models that are pretrained on larger bu… (voir plus)t noisier datasets where the two modalities (e.g., image and text) loosely correspond to each other (e.g., Lu et al., 2019; Radford et al., 2021). Given a task (such as visual question answering), these models are then often fine-tuned on task-specific supervised datasets. (e.g., Lu et al., 2019; Chen et al.,2020; Tan and Bansal, 2019; Li et al., 2020a,b). In addition to the larger pretraining datasets, the transformer architecture (Vaswani et al., 2017) and in particular self-attention applied to two modalities are responsible for the impressive performance of the recent pretrained models on downstream tasks (Hendricks et al., 2021). In this tutorial, we focus on recent vision-language pretraining paradigms. Our goal is to first provide the background on image–language datasets, benchmarks, and modeling innovations before the multimodal pretraining area. Next we discuss the different family of models used for vision-language pretraining, highlighting their strengths and shortcomings. Finally, we discuss the limits of vision-language pretraining through statistical learning, and the need for alternative approaches such as causal representation learning.