Publications

3D Foundation Model-Based Loop Closing for Decentralized Collaborative SLAM
Pierre-Yves Lajoie
Benjamin Ramtoula
Daniele De Martini
Decentralized Collaborative Simultaneous Localization and Mapping (C-SLAM) techniques often struggle to identify map overlaps due to signifi… (see more)cant viewpoint variations among robots. Motivated by recent advancements in 3D foundation models, which can register images despite large viewpoint differences, we propose a robust loop closing approach that leverages these models to establish inter-robot measurements. In contrast to resource-intensive methods requiring full 3D reconstruction within a centralized map, our approach integrates foundation models into existing SLAM pipelines, yielding scalable and robust multi-robot mapping. Our contributions include: 1) integrating 3D foundation models to reliably estimate relative poses from monocular image pairs within decentralized C-SLAM; 2) introducing robust outlier mitigation techniques critical to the use of these relative poses and 3) developing specialized pose graph optimization formulations that efficiently resolve scale ambiguities. We evaluate our method against state-of-the-art approaches, demonstrating improvements in localization and mapping accuracy, alongside significant gains in computational and memory efficiency. These results highlight the potential of our approach for deployment in large-scale multi-robot scenarios.
The role of Large Language Models in IoT security: A systematic review of advances, challenges, and opportunities
Saeid Jamshidi
Negar Shahabi
Amin Nikanjam
Kawser Wazed Nafi
Carol Fung
Predicting the Subhalo Mass Functions in Simulations from Galaxy Images
Tri Nguyen
J. Rose
Chris Lovell
Francisco Villaescusa-navarro
Strong gravitational lensing provides a powerful tool to directly infer the dark matter (DM) subhalo mass function (SHMF) in lens galaxies. … (see more)However, comparing observationally inferred SHMFs to theoretical predictions remains challenging, as the predicted SHMF can vary significantly between galaxies - even within the same cosmological model - due to differences in the properties and environment of individual galaxies. We present a machine learning framework to infer the galaxy-specific predicted SHMF from galaxy images, conditioned on the assumed inverse warm DM particle mass
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using a diverse collection of datasets, covering both visual preferences and textual content. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Rashid A. Mushkani
Measuring What Matters: Connecting AI Ethics Evaluations to System Attributes, Hazards, and Harms
PoissonNet: A Local-Global Approach for Learning on Surfaces
Arman Maesumi
Tanish Makadia
Thibault Groueix
Vladimir Kim
Daniel Ritchie
Many network architectures exist for learning on meshes, yet their constructions entail delicate trade-offs between difficulty learning high… (see more)-frequency features, insufficient receptive field, sensitivity to discretization, and inefficient computational overhead. Drawing from classic local-global approaches in mesh processing, we introduce PoissonNet, a novel neural architecture that overcomes all of these deficiencies by formulating a local-global learning scheme, which uses Poisson's equation as the primary mechanism for feature propagation. Our core network block is simple; we apply learned local feature transformations in the gradient domain of the mesh, then solve a Poisson system to propagate scalar feature updates across the surface globally. Our local-global learning framework preserves the features's full frequency spectrum and provides a truly global receptive field, while remaining agnostic to mesh triangulation. Our construction is efficient, requiring far less compute overhead than comparable methods, which enables scalability -- both in the size of our datasets, and the size of individual training samples. These qualities are validated on various experiments where, compared to previous intrinsic architectures, we attain state-of-the-art performance on semantic segmentation and parameterizing highly-detailed animated surfaces. Finally, as a central application of PoissonNet, we show its ability to learn deformations, significantly outperforming state-of-the-art architectures that learn on surfaces.
Reframing AI-for-Good: Radical Questioning in AI for Human Trafficking Interventions
Reframing AI-for-Good: Radical Questioning in AI for Human Trafficking Interventions
This paper introduces Radical Questioning (RQ), a structured, pre-design ethics framework developed to assess whether artificial intelligenc… (see more)e (AI) should be applied to complex social problems rather than merely how. While much of responsible AI development focuses on aligning systems with principles such as fairness, transparency, and accountability, it often begins after the decision to build has already been made, implicitly treating the deployment of AI as a given rather than a question in itself. In domains such as human trafficking, marked by contested definitions, systemic injustice, and deep stakeholder asymmetries, such assumptions can obscure foundational ethical concerns. RQ offers an upstream, deliberative process for surfacing these concerns before design begins. Drawing from critical theory, participatory ethics, and relational responsibility, RQ formalizes a five-step framework to interrogate problem framings, confront techno-solutionist tendencies, and reflect on the moral legitimacy of intervention. Developed through interdisciplinary collaboration and engagement with survivor-led organizations, RQ was piloted in the domain of human trafficking (HT) which is a particularly high-stakes and ethically entangled application area. Its use led to a fundamental design shift: away from automated detection tools and toward survivor-controlled, empowerment-based technologies. We argue that RQ's novelty lies in both its temporal position, i.e, prior to technical design, and its orientation toward domains where harm is structural and ethical clarity cannot be achieved through one-size-fits-all solutions. RQ thus addresses a critical gap between abstract principles of responsible AI and the lived ethical demands of real-world deployment.
Simplicial Embeddings Improve Sample Efficiency in Actor-Critic Agents
Recent works have proposed accelerating the wall-clock training time of actor-critic methods via the use of large-scale environment parallel… (see more)ization; unfortunately, these can sometimes still require large number of environment interactions to achieve a desired level of performance. Noting that well-structured representations can improve the generalization and sample efficiency of deep reinforcement learning (RL) agents, we propose the use of simplicial embeddings: lightweight representation layers that constrain embeddings to simplicial structures. This geometric inductive bias results in sparse and discrete features that stabilize critic bootstrapping and strengthen policy gradients. When applied to FastTD3, FastSAC, and PPO, simplicial embeddings consistently improve sample efficiency and final performance across a variety of continuous- and discrete-control environments, without any loss in runtime speed.
The Interpolation Constraint in the RV Analysis of M Dwarfs Using Empirical Templates
Nicolas B. Cowan
Étienne Artigau
René Doyon
André M. Silva
Khaled Al Moulla
Personalized Federated Fine-Tuning of Vision Foundation Models for Healthcare
Foundation models open up new possibilities for the use of AI in healthcare. However, even when pre-trained on health data, they still need … (see more)to be fine-tuned for specific downstream tasks. Furthermore, although foundation models reduce the amount of training data required to achieve good performance, obtaining sufficient data is still a challenge. This is due, in part, to restrictions on sharing and aggregating data from different sources to protect patients'privacy. One possible solution to this is to fine-tune foundation models via federated learning across multiple participating clients (i.e., hospitals, clinics, etc.). In this work, we propose a new personalized federated fine-tuning method that learns orthogonal LoRA adapters to disentangle general and client-specific knowledge, enabling each client to fully exploit both their own data and the data of others. Our preliminary results on real-world federated medical imaging tasks demonstrate that our approach is competitive against current federated fine-tuning methods.