Publications

Burst firing optimizes invariant coding of natural communication signals by electrosensory neural populations
Michael G. Metzen
Amin Akhshi
Anmar Khadra
Maurice J. Chacron
LMAC-TD: Producing Time Domain Explanations for Audio Classifiers
Eleonora Mancini
Francesco Paissan
Trimming the Risk: Towards Reliable Continuous Training for Deep Learning Inspection Systems
Altaf Allah Abbassi
Houssem Ben Braiek
Thomas Reid
End-to-end Conditional Robust Optimization
Abhilash Reddy Chenreddy
Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models
Lucas Berry
Axel Brando
Generative diffusion models, notable for their large parameter count (exceeding 100 million) and operation within high-dimensional image spa… (see more)ces, pose significant challenges for traditional uncertainty estimation methods due to computational demands. In this work, we introduce an innovative framework, Diffusion Ensembles for Capturing Uncertainty (DECU), designed for estimating epistemic uncertainty for diffusion models. The DECU framework introduces a novel method that efficiently trains ensembles of conditional diffusion models by incorporating a static set of pre-trained parameters, drastically reducing the computational burden and the number of parameters that require training. Additionally, DECU employs Pairwise-Distance Estimators (PaiDEs) to accurately measure epistemic uncertainty by evaluating the mutual information between model outputs and weights in high-dimensional spaces. The effectiveness of this framework is demonstrated through experiments on the ImageNet dataset, highlighting its capability to capture epistemic uncertainty, specifically in under-sampled image classes.
How Molecules Impact Cells: Unlocking Contrastive PhenoMolecular Retrieval
Philip Fradkin
Puria Azadi
Karush Suri
Frederik Wenkel
Ali Bashashati
Maciej Sypetkowski
Predicting molecular impact on cellular function is a core challenge in therapeutic design. Phenomic experiments, designed to capture cellul… (see more)ar morphology, utilize microscopy based techniques and demonstrate a high throughput solution for uncovering molecular impact on the cell. In this work, we learn a joint latent space between molecular structures and microscopy phenomic experiments, aligning paired samples with contrastive learning. Specifically, we study the problem ofContrastive PhenoMolecular Retrieval, which consists of zero-shot molecular structure identification conditioned on phenomic experiments. We assess challenges in multi-modal learning of phenomics and molecular modalities such as experimental batch effect, inactive molecule perturbations, and encoding perturbation concentration. We demonstrate improved multi-modal learner retrieval through (1) a uni-modal pre-trained phenomics model, (2) a novel inter sample similarity aware loss, and (3) models conditioned on a representation of molecular concentration. Following this recipe, we propose MolPhenix, a molecular phenomics model. MolPhenix leverages a pre-trained phenomics model to demonstrate significant performance gains across perturbation concentrations, molecular scaffolds, and activity thresholds. In particular, we demonstrate an 8.1x improvement in zero shot molecular retrieval of active molecules over the previous state-of-the-art, reaching 77.33% in top-1% accuracy. These results open the door for machine learning to be applied in virtual phenomics screening, which can significantly benefit drug discovery applications.
Are Heterophily-Specific GNNs and Homophily Metrics Really Effective? Evaluation Pitfalls and New Benchmarks
Sitao Luan
Qincheng Lu
Chenqing Hua
Xinyu Wang
Jiaqi Zhu
Xiao-Wen Chang
Over the past decade, Graph Neural Networks (GNNs) have achieved great success on machine learning tasks with relational data. However, rece… (see more)nt studies have found that heterophily can cause significant performance degradation of GNNs, especially on node-level tasks. Numerous heterophilic benchmark datasets have been put forward to validate the efficacy of heterophily-specific GNNs and various homophily metrics have been designed to help people recognize these malignant datasets. Nevertheless, there still exist multiple pitfalls that severely hinder the proper evaluation of new models and metrics. In this paper, we point out three most serious pitfalls: 1) a lack of hyperparameter tuning; 2) insufficient model evaluation on the real challenging heterophilic datasets; 3) missing quantitative evaluation benchmark for homophily metrics on synthetic graphs. To overcome these challenges, we first train and fine-tune baseline models on
Correction: Economic evaluation of the effect of needle and syringe programs on skin, soft tissue, and vascular infections in people who inject drugs: a microsimulation modelling approach
Jihoon Lim
W Alton Russell
Mariam El-Sheikh
Dimitra Panagiotoglou
Perspectives on virtual interviews and emerging technologies integration in family medicine residency programs: a cross-sectional survey study
Raymond Tolentino
Charo Rodriguez
Fanny Hersson-Edery
Julie Lane
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (see more) learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
The Strength of Fuel Refueling Location Problem Formulations
Nagisa Sugishita
Ribal Atallah
CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
Luke Rowe
Roger Girgis
Anthony Gosselin
Bruno Carrez
Florian Golemo
Felix Heide
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data do not react to the actions of the AV, and their behaviour cannot be easily controlled to simulate counterfactual scenarios. Existing approaches have attempted to address these shortcomings by proposing methods that rely on heuristics or learned generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning within a physics-enhanced Nocturne simulator to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through the Nocturne simulator to generate a diverse offline reinforcement learning dataset, annotated with various reward terms. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including those representing adversarial behaviours. We demonstrate that CtRL-Sim can efficiently generate diverse and realistic safety-critical scenarios while providing fine-grained control over agent behaviours. Further, we show that fine-tuning our model on simulated safety-critical scenarios generated by our model enhances this controllability.