Learning to Scale Logits for Temperature-Conditional GFlowNets
Minsu Kim
Joohwan Ko
Dinghuai Zhang
Ling Pan
Taeyoung Yun
Woo Chang Kim
Jinkyoo Park
Emmanuel Bengio
GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, tempera… (see more)ture-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose \textit{Logit-scaling GFlowNets} (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at
Listenable Maps for Audio Classifiers
Lookbehind-SAM: k steps back, 1 step forward
Goncalo Mordido
Pranshu Malviya
Aristide Baratin
Memory Efficient Neural Processes via Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Neural Processes (NPs) are popular meta-learning methods for efficiently modelling predictive uncertainty. Recent state-of-the-art methods, … (see more)however, leverage expensive attention mechanisms, limiting their applications, particularly in low-resource settings. In this work, we propose Constant Memory Attention Block (CMAB), a novel general-purpose attention block that (1) is permutation invariant, (2) computes its output in constant memory, and (3) performs updates in constant computation. Building on CMAB, we propose Constant Memory Attentive Neural Processes (CMANPs), an NP variant which only requires \textbf{constant} memory. Empirically, we show CMANPs achieve state-of-the-art results on popular NP benchmarks (meta-regression and image completion) while being significantly more memory efficient than prior methods.
Mixtures of Experts Unlock Parameter Scaling for Deep RL
Johan Samir Obando Ceron
Ghada Sokar
Timon Willi
Clare Lyle
Jesse Farebrother
Jakob Nicolaus Foerster
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance s… (see more)cales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
Nash Learning from Human Feedback
Remi Munos
Michal Valko
Daniele Calandriello
Mohammad Gheshlaghi Azar
Mark Rowland
Zhaohan Daniel Guo
Yunhao Tang
Matthieu Geist
Thomas Mesnard
Côme Fiegel
Andrea Michi
Marco Selvi
Sertan Girgin
Nikola Momchev
Olivier Bachem
Daniel J Mankowitz
Bilal Piot
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human pref… (see more)erences. Traditionally, RLHF involves the initial step of learning a reward model from pairwise human feedback, i.e., expressed as preferences between pairs of text generations. Subsequently, the LLM's policy is fine-tuned to maximize the reward through a reinforcement learning algorithm. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a pairwise preference model, which is conditioned on two inputs (instead of a single input in the case of a reward model) given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. We illustrate the effectiveness of our approach by presenting experimental results on a text summarization task. We believe NLHF offers a compelling avenue for fine-tuning LLMs and enhancing the alignment of LLMs with human preferences.
Nearest Neighbour Score Estimators for Diffusion Generative Models
Matthew Niedoba
Dylan Green
Saeid Naderiparizi
Vasileios Lioutas
Jonathan Wilder Lavington
Xiaoxuan Liang
Yunpeng Liu
Ke Zhang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Score function estimation is the cornerstone of both training and sampling from diffusion generative models. Despite this fact, the most com… (see more)monly used estimators are either biased neural network approximations or high variance Monte Carlo estimators based on the conditional score. We introduce a novel nearest neighbour score function estimator which utilizes multiple samples from the training set to dramatically decrease estimator variance. We leverage our low variance estimator in two compelling applications. Training consistency models with our estimator, we report a significant increase in both convergence speed and sample quality. In diffusion models, we show that our estimator can replace a learned network for probability-flow ODE integration, opening promising new avenues of future research. Code will be released upon paper acceptance.
Patient-Centered Surgical Care for Children in Low and Lower-Middle Income Countries (LMICs) - A Systematic Scoping Review of the Literature
Riya Sawhney
Kacylia Roy Proulx
Ayla Gerk
Elena Guadagno
A Persuasive Approach to Combating Misinformation
Safwan Hossain
Andjela Mladenovic
Yiling Chen
Bayesian Persuasion is proposed as a tool for social media platforms to combat the spread of misinformation. Since platforms can use machine… (see more) learning to predict the popularity and misinformation features of to-be-shared posts, and users are largely motivated to share popular content, platforms can strategically signal this informational advantage to change user beliefs and persuade them not to share misinformation. We characterize the optimal signaling scheme with imperfect predictions as a linear program and give sufficient and necessary conditions on the classifier to ensure optimal platform utility is non-decreasing and continuous. Next, this interaction is considered under a performative model, wherein platform intervention affects the user's future behaviour. The convergence and stability of optimal signaling under this performative process are fully characterized. Lastly, we experimentally validate that our approach significantly reduces misinformation in both the single round and performative setting.
Randomized Confidence Bounds for Stochastic Partial Monitoring
Maxime Heuillet
Ola Ahmad
Refining SARS-CoV-2 Intra-host Variation by Leveraging Large-scale Sequencing Data
Fatima Mostefai
Jean-Christophe Grenier
Raphael Poujol
Robust Data-driven Prescriptiveness Optimization
Mehran Poursoltani
Angelos Georghiou