Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Principal supervisor :
Collaborating Alumni
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Local Search GFlowNets
Minsu Kim
Sungsoo Ahn
Jinkyoo Park
Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts in Underspecified Visual Tasks
Alexander Rubinstein
Armand Mihai Nicolicioiu
Damien Teney
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to shortcut learning phenomena, where… (see more) a model may rely on erroneous, easy-to-learn, cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs). We discover that DPMs have the inherent capability to represent multiple visual cues independently, even when they are largely correlated in the training data. We leverage this characteristic to encourage model diversity and empirically show the efficacy of the approach with respect to several diversification objectives. We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
AI and Catastrophic Risk
AI and Catastrophic Risk
Abstract:Since OpenAI's release of the very large language models Chat-GPT and GPT-4, the potential dangers of AI have garnered widespread p… (see more)ublic attention. In this essay, the author reviews the threats to democracy posed by the possibility of "rogue AIs," dangerous and powerful AIs that would execute harmful goals, irrespective of whether the outcomes are intended by humans. To mitigate against the risk that rogue AIs present to democracy and geopolitical stability, the author argues that research into safe and defensive AIs should be conducted by a multilateral, international network of research laboratories.
AI and Catastrophic Risk
Abstract:Since OpenAI's release of the very large language models Chat-GPT and GPT-4, the potential dangers of AI have garnered widespread p… (see more)ublic attention. In this essay, the author reviews the threats to democracy posed by the possibility of "rogue AIs," dangerous and powerful AIs that would execute harmful goals, irrespective of whether the outcomes are intended by humans. To mitigate against the risk that rogue AIs present to democracy and geopolitical stability, the author argues that research into safe and defensive AIs should be conducted by a multilateral, international network of research laboratories.
AI and Catastrophic Risk
Abstract:Since OpenAI's release of the very large language models Chat-GPT and GPT-4, the potential dangers of AI have garnered widespread p… (see more)ublic attention. In this essay, the author reviews the threats to democracy posed by the possibility of "rogue AIs," dangerous and powerful AIs that would execute harmful goals, irrespective of whether the outcomes are intended by humans. To mitigate against the risk that rogue AIs present to democracy and geopolitical stability, the author argues that research into safe and defensive AIs should be conducted by a multilateral, international network of research laboratories.
AI and Catastrophic Risk
AI and Catastrophic Risk
AI and Catastrophic Risk
Tree Cross Attention
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Tree Cross Attention
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
M.S. Suraj
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
Nicholas Valiante
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke L. Lairson
Jake P. Taylor-King