Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :

Publications

Spotlight Attention: Robust Object-Centric Learning With a Spatial Locality Prior
Ayush K Chakravarthy
Trang M. Nguyen
Anirudh Goyal
Michael Curtis Mozer
The aim of object-centric vision is to construct an explicit representation of the objects in a scene. This representation is obtained via a… (see more) set of interchangeable modules called \emph{slots} or \emph{object files} that compete for local patches of an image. The competition has a weak inductive bias to preserve spatial continuity; consequently, one slot may claim patches scattered diffusely throughout the image. In contrast, the inductive bias of human vision is strong, to the degree that attention has classically been described with a spotlight metaphor. We incorporate a spatial-locality prior into state-of-the-art object-centric vision models and obtain significant improvements in segmenting objects in both synthetic and real-world datasets. Similar to human visual attention, the combination of image content and spatial constraints yield robust unsupervised object-centric learning, including less sensitivity to model hyperparameters.
Attention Schema in Neural Agents
Dianbo Liu
Samuele Bolotta
Mike He Zhu
Attention has become a common ingredient in deep learning architectures. It adds a dynamical selection of information on top of the static s… (see more)election of information supported by weights. In the same way, we can imagine a higher-order informational filter built on top of attention: an Attention Schema (AS), namely, a descriptive and predictive model of attention. In cognitive neuroscience, Attention Schema Theory (AST) supports this idea of distinguishing attention from AS. A strong prediction of this theory is that an agent can use its own AS to also infer the states of other agents' attention and consequently enhance coordination with other agents. As such, multi-agent reinforcement learning would be an ideal setting to experimentally test the validity of AST. We explore different ways in which attention and AS interact with each other. Our preliminary results indicate that agents that implement the AS as a recurrent internal control achieve the best performance. In general, these exploratory experiments suggest that equipping artificial agents with a model of attention can enhance their social intelligence.
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact algorithms, making them a tempting domain to appl… (see more)y machine learning methods. The highly structured constraints in these problems can hinder either optimization or sampling directly in the solution space. On the other hand, GFlowNets have recently emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially and have the potential to amortize such solution-searching processes in CO, as well as generate diverse solution candidates. In this paper, we design Markov decision processes (MDPs) for different combinatorial problems and propose to train conditional GFlowNets to sample from the solution space. Efficient training techniques are also developed to benefit long-range credit assignment. Through extensive experiments on a variety of different CO tasks with synthetic and realistic data, we demonstrate that GFlowNet policies can efficiently find high-quality solutions. Our implementation is open-sourced at https://github.com/zdhNarsil/GFlowNet-CombOpt.
Model evaluation for extreme risks
Toby Shevlane
Sebastian Farquhar
Ben Garfinkel
Mary Phuong
Jess Whittlestone
Jade Leung
Daniel Kokotajlo
Nahema A. Marchal
Markus Anderljung
Noam Kolt
Lewis Ho
Divya Siddarth
Shahar Avin
W. Hawkins
Been Kim
Iason Gabriel
Vijay Bolina
Jack Clark
Paul F. Christiano … (see 1 more)
Allan Dafoe
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further pro… (see more)gress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through"dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through"alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Model evaluation for extreme risks
Toby Shevlane
Sebastian Farquhar
Ben Garfinkel
Mary Phuong
Jess Whittlestone
Jade Leung
Daniel Kokotajlo
Nahema A. Marchal
Markus Anderljung
Noam Kolt
Lewis Ho
Divya Siddarth
Shahar Avin
W. Hawkins
Been Kim
Iason Gabriel
Vijay Bolina
Jack Clark
Paul F. Christiano … (see 1 more)
Allan Dafoe
Model evaluation for extreme risks
Toby Shevlane
Sebastian Farquhar
Ben Garfinkel
Mary Phuong
Jess Whittlestone
Jade Leung
Daniel Kokotajlo
Nahema A. Marchal
Markus Anderljung
Noam Kolt
Lewis Ho
Divya Siddarth
Shahar Avin
W. Hawkins
Been Kim
Iason Gabriel
Vijay Bolina
Jack Clark
Paul F. Christiano … (see 1 more)
Allan Dafoe
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further pro… (see more)gress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through"dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through"alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Model evaluation for extreme risks
Toby Shevlane
Sebastian Farquhar
Ben Garfinkel
Mary Phuong
Jess Whittlestone
Jade Leung
Daniel Kokotajlo
Nahema A. Marchal
Markus Anderljung
Noam Kolt
Lewis Ho
Divya Siddarth
Shahar Avin
W. Hawkins
Been Kim
Iason Gabriel
Vijay Bolina
Jack Clark
Paul F. Christiano … (see 1 more)
Allan Dafoe
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further pro… (see more)gress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through"dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through"alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Model evaluation for extreme risks
Toby Shevlane
Sebastian Farquhar
Ben Garfinkel
Mary Phuong
Jess Whittlestone
Jade Leung
Daniel Kokotajlo
Nahema A. Marchal
Markus Anderljung
Noam Kolt
Lewis Ho
Divya Siddarth
Shahar Avin
W. Hawkins
Been Kim
Iason Gabriel
Vijay Bolina
Jack Clark
Paul F. Christiano … (see 1 more)
Allan Dafoe
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further pro… (see more)gress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through"dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through"alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days
Colleen J Gillon
Jérôme A. Lecoq
Jason E. Pina
Ruweida Ahmed
Yazan N. Billeh
Shiella Caldejon
Peter Groblewski
Timothy M. Henley
India Kato
Eric Lee
Jennifer Luviano
Kyla Mace
Chelsea Nayan
Thuyanh V. Nguyen
Kat North
Jed Perkins
Sam Seid
Matthew T. Valley
Ali Williford
Timothy P. Lillicrap
Joel Zylberberg
Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days
Colleen J Gillon
Jérôme A. Lecoq
Jason E. Pina
Ruweida Ahmed
Yazan N. Billeh
Shiella Caldejon
Peter Groblewski
Timothy M. Henley
India Kato
Eric Lee
Jennifer Luviano
Kyla Mace
Chelsea Nayan
Thuyanh V. Nguyen
Kat North
Jed Perkins
Sam Seid
Matthew T. Valley
Ali Williford
Timothy P. Lillicrap
Joel Zylberberg
Automated Detection of Anatomical Landmarks During Colonoscopy Using a Deep Learning Model
Mahsa Taghiakbari
Sina Hamidi Ghalehjegh
Emmanuel Jehanno
Tess Berthier
Lisa Di Jorio
Saber Ghadakzadeh
Alan Barkun
Mark Takla
Mickael Bouin
Eric Deslandres
Simon Bouchard
Sacha Sidani
Daniel von Renteln
Abstract Background and aims Identification and photo-documentation of the ileocecal valve (ICV) and appendiceal orifice (AO) confirm comple… (see more)teness of colonoscopy examinations. We aimed to develop and test a deep convolutional neural network (DCNN) model that can automatically identify ICV and AO, and differentiate these landmarks from normal mucosa and colorectal polyps. Methods We prospectively collected annotated full-length colonoscopy videos of 318 patients undergoing outpatient colonoscopies. We created three nonoverlapping training, validation, and test data sets with 25,444 unaltered frames extracted from the colonoscopy videos showing four landmarks/image classes (AO, ICV, normal mucosa, and polyps). A DCNN classification model was developed, validated, and tested in separate data sets of images containing the four different landmarks. Results After training and validation, the DCNN model could identify both AO and ICV in 18 out of 21 patients (85.7%). The accuracy of the model for differentiating AO from normal mucosa, and ICV from normal mucosa were 86.4% (95% CI 84.1% to 88.5%), and 86.4% (95% CI 84.1% to 88.6%), respectively. Furthermore, the accuracy of the model for differentiating polyps from normal mucosa was 88.6% (95% CI 86.6% to 90.3%). Conclusion This model offers a novel tool to assist endoscopists with automated identification of AO and ICV during colonoscopy. The model can reliably distinguish these anatomical landmarks from normal mucosa and colorectal polyps. It can be implemented into automated colonoscopy report generation, photo-documentation, and quality auditing solutions to improve colonoscopy reporting quality.
Automated Detection of Anatomical Landmarks During Colonoscopy Using a Deep Learning Model
Mahsa Taghiakbari
Sina Hamidi Ghalehjegh
Emmanuel Jehanno
Tess Berthier
Lisa Di Jorio
Saber Ghadakzadeh
Alan Barkun
Mark Takla
Mickael Bouin
Eric Deslandres
Simon Bouchard
Sacha Sidani
Daniel von Renteln
Abstract Background and aims Identification and photo-documentation of the ileocecal valve (ICV) and appendiceal orifice (AO) confirm comple… (see more)teness of colonoscopy examinations. We aimed to develop and test a deep convolutional neural network (DCNN) model that can automatically identify ICV and AO, and differentiate these landmarks from normal mucosa and colorectal polyps. Methods We prospectively collected annotated full-length colonoscopy videos of 318 patients undergoing outpatient colonoscopies. We created three nonoverlapping training, validation, and test data sets with 25,444 unaltered frames extracted from the colonoscopy videos showing four landmarks/image classes (AO, ICV, normal mucosa, and polyps). A DCNN classification model was developed, validated, and tested in separate data sets of images containing the four different landmarks. Results After training and validation, the DCNN model could identify both AO and ICV in 18 out of 21 patients (85.7%). The accuracy of the model for differentiating AO from normal mucosa, and ICV from normal mucosa were 86.4% (95% CI 84.1% to 88.5%), and 86.4% (95% CI 84.1% to 88.6%), respectively. Furthermore, the accuracy of the model for differentiating polyps from normal mucosa was 88.6% (95% CI 86.6% to 90.3%). Conclusion This model offers a novel tool to assist endoscopists with automated identification of AO and ICV during colonoscopy. The model can reliably distinguish these anatomical landmarks from normal mucosa and colorectal polyps. It can be implemented into automated colonoscopy report generation, photo-documentation, and quality auditing solutions to improve colonoscopy reporting quality.