Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Scientific Director, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific director of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université du Québec à Rimouski
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - UQAR
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Barcelona University
Research Intern - Université de Montréal
Research Intern - Université de Montréal
Research Intern
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni
Collaborating Alumni - Imperial College London
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni
Independent visiting researcher - Technical University of Munich
Postdoctorate - Polytechnique Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Generative Augmented Flow Networks
Ling Pan
Dinghuai Zhang
Longbo Huang
The Generative Flow Network is a probabilistic framework where an agent learns a stochastic policy for object generation, such that the prob… (see more)ability of generating an object is proportional to a given reward function. Its effectiveness has been shown in discovering high-quality and diverse solutions, compared to reward-maximizing reinforcement learning-based methods. Nonetheless, GFlowNets only learn from rewards of the terminal states, which can limit its applicability. Indeed, intermediate rewards play a critical role in learning, for example from intrinsic motivation to provide intermediate feedback even in particularly challenging sparse reward tasks. Inspired by this, we propose Generative Augmented Flow Networks (GAFlowNets), a novel learning framework to incorporate intermediate rewards into GFlowNets. We specify intermediate rewards by intrinsic motivation to tackle the exploration problem in sparse reward environments. GAFlowNets can leverage edge-based and state-based intrinsic rewards in a joint way to improve exploration. Based on extensive experiments on the GridWorld task, we demonstrate the effectiveness and efficiency of GAFlowNet in terms of convergence, performance, and diversity of solutions. We further show that GAFlowNet is scalable to a more complex and large-scale molecule generation domain, where it achieves consistent and significant performance improvement.
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
Tristan Deleu
Xu Ji
Edward J Hu
Katie E Everett
Dinghuai Zhang
This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically us… (see more)ed to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions.
Latent Bottlenecked Attentive Neural Processes
Leo Feng
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Neural Processes (NPs) are popular methods in meta-learning that can estimate predictive uncertainty on target datapoints by conditioning on… (see more) a context dataset. Previous state-of-the-art method Transformer Neural Processes (TNPs) achieve strong performance but require quadratic computation with respect to the number of context datapoints, significantly limiting its scalability. Conversely, existing sub-quadratic NP variants perform significantly worse than that of TNPs. Tackling this issue, we propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a new computationally efficient sub-quadratic NP variant, that has a querying computational complexity independent of the number of context datapoints. The model encodes the context dataset into a constant number of latent vectors on which self-attention is performed. When making predictions, the model retrieves higher-order information from the context dataset via multiple cross-attention mechanisms on the latent vectors. We empirically show that LBANPs achieve results competitive with the state-of-the-art on meta-regression, image completion, and contextual multi-armed bandits. We demonstrate that LBANPs can trade-off the computational cost and performance according to the number of latent vectors. Finally, we show LBANPs can scale beyond existing attention-based NP variants to larger dataset settings.
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Dinghuai Zhang
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
OCIM : Object-centric Compositional Imagination for Visual Abstract Reasoning
Rim Assouel
Pau Rodriguez
Perouz Taslakian
David Vazquez
A long-sought property of machine learning systems is the ability to compose learned concepts in novel ways that would enable them to m… (see more)ake sense of new situations. Such capacity for imagination -- a core aspect of human intelligence -- is not yet attained for machines. In this work, we show that object-centric inductive biases can be leveraged to derive an imagination-based learning framework that achieves compositional generalization on a series of tasks. Our method, denoted Object-centric Compositional IMagination (OCIM), decomposes visual reasoning tasks into a series of primitives applied to objects without using a domain-specific language. We show that these primitives can be recomposed to generate new imaginary tasks. By training on such imagined tasks, the model learns to reuse the previously-learned concepts to systematically generalize at test time. We test our model on a series of arithmetic tasks where the model has to infer the sequence of operations (programs) applied to a series of inputs. We find that imagination is key for the model to find the correct solution for unseen combinations of operations.
P REDICTIVE I NFERENCE WITH F EATURE C ONFORMAL P REDICTION
Jiaye Teng
Chuan Wen
Dinghuai Zhang
Yang Gao
Yang Yuan
Robust and Controllable Object-Centric Learning through Energy-based Models
Ruixiang ZHANG
Tong Che
Boris Ivanovic
Renhao Wang
Marco Pavone
Humans are remarkably good at understanding and reasoning about complex visual scenes. The capability of decomposing low-level observations … (see more)into discrete objects allows us to build a grounded abstract representation and identify the compositional structure of the world. Thus it is a crucial step for machine learning models to be capable of inferring objects and their properties from visual scene without explicit supervision. However, existing works on object-centric representation learning are either relying on tailor-made neural network modules or assuming sophisticated models of underlying generative and inference processes. In this work, we present EGO, a conceptually simple and general approach to learning object-centric representation through energy-based model. By forming a permutation-invariant energy function using vanilla attention blocks that are readily available in Transformers, we can infer object-centric latent variables via gradient-based MCMC methods where permutation equivariance is automatically guaranteed. We show that EGO can be easily integrated into existing architectures, and can effectively extract high-quality object-centric representations, leading to better segmentation accuracy and competitive downstream task performance. We empirically evaluate the robustness of the learned representation from EGO against distribution shift. Finally, we demonstrate the effectiveness of EGO in systematic compositional generalization, by recomposing learned energy functions for novel scene generation and manipulation.
Stateful active facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning
Dianbo Liu
Vedant Shah
Oussama Boussif
Cristian Meo
Anirudh Goyal
Tianmin Shu
Michael Curtis Mozer
Nicolas Heess
Leveraging the Third Dimension in Contrastive Learning
Sumukh K Aithal
Anirudh Goyal
Alex Lamb
Michael Curtis Mozer
Self-Supervised Learning (SSL) methods operate on unlabeled data to learn robust representations useful for downstream tasks. Most SSL metho… (see more)ds rely on augmentations obtained by transforming the 2D image pixel map. These augmentations ignore the fact that biological vision takes place in an immersive three-dimensional, temporally contiguous environment, and that low-level biological vision relies heavily on depth cues. Using a signal provided by a pretrained state-of-the-art monocular RGB-to-depth model (the \emph{Depth Prediction Transformer}, Ranftl et al., 2021), we explore two distinct approaches to incorporating depth signals into the SSL framework. First, we evaluate contrastive learning using an RGB+depth input representation. Second, we use the depth signal to generate novel views from slightly different camera positions, thereby producing a 3D augmentation for contrastive learning. We evaluate these two approaches on three different SSL methods -- BYOL, SimSiam, and SwAV -- using ImageNette (10 class subset of ImageNet), ImageNet-100 and ImageNet-1k datasets. We find that both approaches to incorporating depth signals improve the robustness and generalization of the baseline SSL methods, though the first approach (with depth-channel concatenation) is superior. For instance, BYOL with the additional depth channel leads to an increase in downstream classification accuracy from 85.3\% to 88.0\% on ImageNette and 84.1\% to 87.0\% on ImageNet-C.
Regeneration Learning: A Learning Paradigm for Data Generation
Xu Tan
Tao Qin
Jiang Bian
Tie-Yan Liu
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Anh Tuan Luu
Xavier Bresson
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS