Portrait de Aishwarya Agrawal

Aishwarya Agrawal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Chercheuse scientifique, Google DeepMind, Montréal
Sujets de recherche
Apprentissage multimodal
Apprentissage profond
Traitement du langage naturel
Vision par ordinateur

Biographie

Aishwarya Agrawal est professeure adjointe au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Elle est également titulaire d'une chaire en IA Canada-CIFAR et membre académique principale de Mila – Institut québécois d’intelligence artificielle.

Elle passe également un jour par semaine chez DeepMind en tant que chercheuse scientifique; d'août 2019 à décembre 2020, elle y a été chercheuse scientifique à plein temps. Détentrice d’un baccalauréat en génie électrique avec une mineure en informatique, Aishwarya a obtenu en août 2019 un doctorat de Georgia Tech, en travaillant avec Dhruv Batra et Devi Parikh. Ses intérêts de recherche se situent à l'intersection des sous-disciplines suivantes de l'IA : vision par ordinateur, apprentissage profond et traitement du langage naturel, avec un accent sur le développement de systèmes d'IA capables de « voir » (c'est-à-dire de comprendre le contenu d'une image : qui, quoi, où, qui fait quoi ?) et de « parler » (c'est-à-dire de communiquer cette compréhension aux humains en langage naturel libre).

Elle a reçu plusieurs prix et bourses, dont le prix des chaires en IA Canada-CIFAR, le prix de la meilleure thèse de doctorat Sigma Xi 2020 et le prix de la dissertation 2020 du College of Computing de Georgia Tech, la bourse Google 2019 et la bourse Facebook 2019-2020 (toutes deux refusées en raison de l'obtention du diplôme), ainsi que la bourse d’études supérieures NVIDIA 2018-2019. Aishwarya a été l'une des deux finalistes du prix de la meilleure thèse 2019 de l'AAAI / ACM SIGAI. Elle a également été sélectionnée pour les Rising Stars in EECS 2018.

Étudiants actuels

Maîtrise recherche - UdeM
Collaborateur·rice de recherche - University of British Columbia
Maîtrise recherche - UdeM

Publications

Controlling Multimodal LLMs via Reward-guided Decoding
Oscar Mañas
Pierluca D'Oro
Koustuv Sinha
Michal Drozdzal
CTRL-O: Language-Controllable Object-Centric Visual Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Rabiul Awal
Maximilian Seitzer
Efstratios Gavves
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each … (voir plus)slot captures a distinct object. Current state-of-the-art models have shown remarkable success in object discovery, particularly in complex real-world scenes, while also generalizing well to unseen domains. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects and parts, without allowing user input to guide or modify which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as enabling models to represent scenes at variable levels of granularity based on user specification. In this work, we propose a novel approach that conditions slot representations through guided decomposition, paired with a novel contrastive learning objective, to enable user-directed control over which objects are represented. Our method achieves such controllability without any mask supervision and successfully binds to user-specified objects in complex real-world scenes.
Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward Modeling
Qian Yang
Weixiang Yan
Multi-Modal Large Language Models (MLLMs) have significantly advanced multi-modal reasoning but still struggle with compositional reasoning … (voir plus)tasks. Multi-agent collaboration provides a promising solution by leveraging the distinct capabilities of different agents. Specifically, a decomposer agent to handle task breakdown and an answerer agent to generate responses. While there have been efforts to adaptively decompose tasks based on the answerer agent's capabilities, such as using in-context learning, these methods often prove insufficient for fully effective decomposition. We address this issue by enhancing collaboration through fine-grained reward modeling, where each generated sub-question is assigned a specialized reward without requiring extra annotation or tuning of a reward model. Our proposed method dynamically optimizes the decomposition process, enabling better alignment between agents. Experimental results on four vision-language tasks demonstrate consistent improvements, with a 5.5\% absolute increase in mean performance over traditional approaches. These findings highlight the efficacy of fine-grained reward modeling for enhancing multi-agent, multi-modal collaboration.
Visual Language Alignment Tuning
Le Zhang
Qian Yang
VisMin: Visual Minimal-Change Understanding
Rabiul Awal
Saba Ahmadi
Le Zhang
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). To evalua… (voir plus)te VLMs' fine-grained understanding, existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, our focus is on evaluating VLMs' capability to distinguish between two very similar images given a caption. To this end, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. Importantly, the image pair (as well as the caption pair) contains minimal changes, i.e., between the two images (as well as between the two captions), only one aspect changes at a time from among the following possible types of changes: object, attribute, count, and spatial relation. These four types of minimal changes are specifically designed to test the models' understanding of objects, attributes of objects (such as color, material, shape), counts of objects, and spatial relationships between objects. To curate our benchmark, we built an automatic pipeline using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. Furthermore, leveraging the automated nature of our data creation process, we generate a large-scale training dataset, which we use to finetune CLIP (a foundational VLM) and Idefics2 (a multimodal large language model). Our findings show that both these models benefit significantly from fine-tuning on this data, as evident by marked improvements in fine-grained understanding across a wide range of benchmarks. Additionally, such fine-tuning improves CLIP's general image-text alignment capabilities too. All resources including the benchmark, the training data, and the finetuned model checkpoints will be released.
VisMin: Visual Minimal-Change Understanding
Rabiul Awal
Saba Ahmadi
Le Zhang
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing … (voir plus)benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar \textit{captions} given an image. In this paper, we introduce a new, challenging benchmark termed \textbf{Vis}ual \textbf{Min}imal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: \textit{object}, \textit{attribute}, \textit{count}, and \textit{spatial relation}. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
Decompose and Compare Consistency: Measuring VLMs' Answer Reliability via Task-Decomposition Consistency Comparison
Qian Yang
Weixiang Yan
Despite tremendous advancements, current state-of-the-art Vision-Language Models (VLMs) are still far from perfect. They tend to hallucinate… (voir plus) and may generate biased responses. In such circumstances, having a way to assess the reliability of a given response generated by a VLM is quite useful. Existing methods, such as estimating uncertainty using answer likelihoods or prompt-based confidence generation, often suffer from overconfidence. Other methods use self-consistency comparison but are affected by confirmation biases. To alleviate these, we propose \textbf{De}compose and \textbf{C}ompare \textbf{C}onsistency (\texttt{DeCC}) for reliability measurement. By comparing the consistency between the direct answer generated using the VLM's internal reasoning process, and the indirect answers obtained by decomposing the question into sub-questions and reasoning over the sub-answers produced by the VLM, \texttt{DeCC} measures the reliability of VLM's direct answer. Experiments across six vision-language tasks with three VLMs show \texttt{DeCC}'s reliability estimation achieves better correlation with task accuracy compared to the existing methods.
Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding
Le Zhang
Rabiul Awal
Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream … (voir plus)tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in"bag-of-words"representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at https://github.com/lezhang7/Enhance-FineGrained.
An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (voir 21 de plus)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
Improving Text-to-Image Consistency via Automatic Prompt Optimization
Oscar Mañas
Pietro Astolfi
Melissa Hall
Candace Ross
Jack Urbanek
Adina Williams
Michal Drozdzal
Improving Automatic VQA Evaluation Using Large Language Models
Oscar Mañas
Benno Krojer
8 years after the visual question answering (VQA) task was proposed, accuracy remains the primary metric for automatic evaluation. VQA Accur… (voir plus)acy has been effective so far in the IID evaluation setting. However, our community is undergoing a shift towards open-ended generative models and OOD evaluation. In this new paradigm, the existing VQA Accuracy metric is overly stringent and underestimates the performance of VQA systems. Thus, there is a need to develop more robust automatic VQA metrics that serve as a proxy for human judgment. In this work, we propose to leverage the in-context learning capabilities of instruction-tuned large language models (LLMs) to build a better VQA metric. We formulate VQA evaluation as an answer-rating task where the LLM is instructed to score the accuracy of a candidate answer given a set of reference answers. We demonstrate the proposed metric better correlates with human judgment compared to existing metrics across several VQA models and benchmarks. We hope wide adoption of our metric will contribute to better estimating the research progress on the VQA task. We plan to release the evaluation code and collected human judgments.
Benchmarking Vision Language Models for Cultural Understanding
Shravan Nayak
Kanishk Jain
Rabiul Awal
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Sta'nczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (voir plus)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM's geo-diverse cultural understanding. We curate a collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly lower performance for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.