Accueil

Inspirer le développement de l'intelligence artificielle au bénéfice de tous·tes

Un professeur s'entretient avec ses étudiants dans un café/lounge.

Situé au cœur de l’écosystème québécois en intelligence artificielle (IA), Mila rassemble une communauté de plus de 1200 personnes spécialisées en apprentissage automatique et dédiées à l’excellence scientifique et l’innovation.

À propos

À la une
À la une
À la une

Corps professoral

Fondé en 1993 par le professeur Yoshua Bengio, Mila regroupe aujourd'hui plus de 140 professeur·e·s affilié·e·s à l'Université de Montréal, l'Université McGill, Polytechnique Montréal et HEC Montréal. L'institut accueille également des professeur·e·s de l'Université Laval, de l'Université de Sherbrooke, de l'École de technologie supérieure (ÉTS) et de l'Université Concordia.

Consultez l'annuaire en ligne

Photo de Yoshua Bengio

Publications récentes

Adaptation, Comparison and Practical Implementation of Fairness Schemes in Kidney Exchange Programs
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (voir plus)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
Stable Gradients for Stable Learning at Scale in Deep Reinforcement Learning
Roger Creus Castanyer
Johan Samir Obando Ceron
Lu Li
Scaling deep reinforcement learning networks is challenging and often results in degraded performance, yet the root causes of this failure m… (voir plus)ode remain poorly understood. Several recent works have proposed mechanisms to address this, but they are often complex and fail to highlight the causes underlying this difficulty. In this work, we conduct a series of empirical analyses which suggest that the combination of non-stationarity with gradient pathologies, due to suboptimal architectural choices, underlie the challenges of scale. We propose a series of direct interventions that stabilize gradient flow, enabling robust performance across a range of network depths and widths. Our interventions are simple to implement and compatible with well-established algorithms, and result in an effective mechanism that enables strong performance even at large scales. We validate our findings on a variety of agents and suites of environments.
Can GPT4 Generate Effective Feedback on Code Readability?
Xiaotian Su
Yajie Song
Marcus Messer
Jaromir Savelka
April Wang
Discovering Temporal Structure: An Overview of Hierarchical Reinforcement Learning
Martin Klissarov
Akhil Bagaria
Ziyan Luo
George Konidaris
Marlos C. Machado
Developing agents capable of exploring, planning and learning in complex open-ended environments is a grand challenge in artificial intellig… (voir plus)ence (AI). Hierarchical reinforcement learning (HRL) offers a promising solution to this challenge by discovering and exploiting the temporal structure within a stream of experience. The strong appeal of the HRL framework has led to a rich and diverse body of literature attempting to discover a useful structure. However, it is still not clear how one might define what constitutes good structure in the first place, or the kind of problems in which identifying it may be helpful. This work aims to identify the benefits of HRL from the perspective of the fundamental challenges in decision-making, as well as highlight its impact on the performance trade-offs of AI agents. Through these benefits, we then cover the families of methods that discover temporal structure in HRL, ranging from learning directly from online experience to offline datasets, to leveraging large language models (LLMs). Finally, we highlight the challenges of temporal structure discovery and the domains that are particularly well-suited for such endeavours.

IA pour l'humanité

Le développement socialement responsable et bénéfique de l'IA est une dimension fondamentale de la mission de Mila. En tant que chef de file, nous souhaitons contribuer au dialogue social et au développement d'applications qui seront bénéfiques pour la société.

En savoir plus

Une personne regarde un ciel étoilé.