Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
We propose a new unsupervised anomaly detection method based on the sliced-Wasserstein distance for training data selection in machine learn… (voir plus)ing approaches. Our filtering technique is interesting for decision-making pipelines deploying machine learning models in critical sectors, e.g., power systems, as it offers a conservative data selection and an optimal transport interpretation. To ensure the scalability of our method, we provide two efficient approximations. The first approximation processes reduced-cardinality representations of the datasets concurrently. The second makes use of a computationally light Euclidian distance approximation. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We present the filtering patterns of our method on synthetic datasets and numerically benchmark our method for training data selection. Finally, we employ our method as part of a first forecasting benchmark for our open-source dataset.
Trade‐off of different deep learning‐based auto‐segmentation approaches for treatment planning of pediatric craniospinal irradiation autocontouring of OARs for pediatric CSI
As auto‐segmentation tools become integral to radiotherapy, more commercial products emerge. However, they may not always suit our needs. … (voir plus)One notable example is the use of adult‐trained commercial software for the contouring of organs at risk (OARs) of pediatric patients.
The canonical deep learning approach for learning requires computing a gradient term at each block by back-propagating the error signal from… (voir plus) the output towards each learnable parameter. Given the stacked structure of neural networks, where each block builds on the representation of the block below, this approach leads to hierarchical representations. More abstract features live on the top blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each block independently learns to denoise a noisy target using only local targets and back-propagation within the block. We believe this work takes a first step towards introducing a new family of learning methods that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each block beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm, is easy to use and computationally efficient. By departing from the traditional learning paradigm which requires back-propagating a global error signal, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
The canonical deep learning approach for learning requires computing a gradient term at each block by back-propagating the error signal from… (voir plus) the output towards each learnable parameter. Given the stacked structure of neural networks, where each block builds on the representation of the block below, this approach leads to hierarchical representations. More abstract features live on the top blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each block independently learns to denoise a noisy target using only local targets and back-propagation within the block. We believe this work takes a first step towards introducing a new family of learning methods that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each block beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm, is easy to use and computationally efficient. By departing from the traditional learning paradigm which requires back-propagating a global error signal, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.