Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurate… (voir plus)ly represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurate… (voir plus)ly represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
The increasing availability of geospatial foundation models has the potential to transform remote sensing applications such as land cover cl… (voir plus)assification, environmental monitoring, and change detection. Despite promising benchmark results, the deployment of these models in operational settings is challenging and rare. Standardized evaluation tasks often fail to capture real-world complexities relevant for end-user adoption such as data heterogeneity, resource constraints, and application-specific requirements. This paper presents a structured approach to integrate geospatial foundation models into operational mapping systems. Our protocol has three key steps: defining application requirements, adapting the model to domain-specific data and conducting rigorous empirical testing. Using the Presto model in a case study for crop mapping, we demonstrate that fine-tuning a pre-trained model significantly improves performance over conventional supervised methods. Our results highlight the model’s strong spatial and temporal generalization capabilities. Our protocol provides a replicable blueprint for practitioners and lays the groundwork for future research to operationalize foundation models in diverse remote sensing applications. Application of the protocol to the WorldCereal global crop-mapping system showcases the framework’s scalability.
Large Language Models (LLM) have demonstrated the capability of generating free text self Natural Language Explanation (self-NLE) to justify… (voir plus) their answers. Despite their logical appearance, self-NLE do not necessarily reflect the LLM actual decision-making process, making such explanations unfaithful. While existing methods for measuring self-NLE faithfulness mostly rely on behavioral tests or computational block identification, none of them examines the neural activity underlying the model's reasoning. This work introduces a novel flexible framework for quantitatively measuring the faithfulness of LLM-generated self-NLE by directly comparing the latter with interpretations of the model's internal hidden states. The proposed framework is versatile and provides deep insights into self-NLE faithfulness by establishing a direct connection between self-NLE and model reasoning. This approach advances the understanding of self-NLE faithfulness and provides building blocks for generating more faithful self-NLE.
Large Language Models (LLM) have demonstrated the capability of generating free text self Natural Language Explanation (self-NLE) to justify… (voir plus) their answers. Despite their logical appearance, self-NLE do not necessarily reflect the LLM actual decision-making process, making such explanations unfaithful. While existing methods for measuring self-NLE faithfulness mostly rely on behavioral tests or computational block identification, none of them examines the neural activity underlying the model's reasoning. This work introduces a novel flexible framework for quantitatively measuring the faithfulness of LLM-generated self-NLE by directly comparing the latter with interpretations of the model's internal hidden states. The proposed framework is versatile and provides deep insights into self-NLE faithfulness by establishing a direct connection between self-NLE and model reasoning. This approach advances the understanding of self-NLE faithfulness and provides building blocks for generating more faithful self-NLE.
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering … (voir plus)methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering … (voir plus)methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, leading to inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that _samples_ from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant Diffusion Tree Search (DTS*) performs a robust search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to
Recent advances in 3D generative models have achieved impressive results but 3D contents generated by these models may not align with subjec… (voir plus)tive human preferences or task-specific criteria. Moreover, a core challenge in the 3D texture generation domain remains: most existing approaches rely on repeated calls to 2D text-to-image generative models, which lack an inherent understanding of the 3D structure of the input 3D mesh object. To address this, we propose an end-to-end differentiable preference learning framework that back-propagates human preferences, represented by differentiable reward functions, through the entire 3D generative pipeline, making the process inherently geometry-aware. We demonstrate the effectiveness of our framework using four proposed novel geometry-aware reward functions, offering a more controllable and interpretable pathway for high-quality 3D content creation from natural language.
As pre-trained language models grow in size, full fine-tuning their parameters on task adaptation data becomes increasingly impractical. To … (voir plus)address this challenge, some methods for low-rank adaptation of language models have been proposed, e.g. LoRA, which incorporates trainable low-rank decomposition matrices into only some parameters of the pre-trained model, called adapters. This approach significantly reduces the number of trainable parameters compared to fine-tuning all parameters or adapters. In this work, we look at low-rank adaptation method from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA is equivalent to fine-tuning adapters with noisy batch gradients - just like what DPSGD algorithm does. We also quantify the variance of the injected noise as a decreasing function of adaptation rank. By establishing a Berry-Esseen type bound on the total variation distance between the injected noise distribution and a Gaussian noise distribution with the same variance, we show that the dynamics of low-rank adaptation is very close to when DPSGD is performed w.r.t the adapters. Following our theoretical findings and approved by our experimental results, we show that low-rank adaptation provides robustness to membership inference attacks w.r.t the fine-tuning data.
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as spe… (voir plus)ech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.