Publications

Building spatial world models from sparse transitional episodic memories
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
Yingzhi Wang
Anas Alhmoud
Saad Alsahly
Muhammad Alqurishi
Field-Level Comparison and Robustness Analysis of Cosmological N-Body Simulations
Adrian E. Bayer
Francisco Villaescusa-navarro
Romain Teyssier
Lehman H. Garrison
Greg L. Bryan
Marco Gatti
E. Visbal
Field-Level Comparison and Robustness Analysis of Cosmological N-Body Simulations
Adrian E. Bayer
Francisco Villaescusa-navarro
Romain Teyssier
Lehman H. Garrison
Greg L. Bryan
Marco Gatti
E. Visbal
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (voir plus)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
Half Search Space is All You Need
Pavel Rumiantsev
RobusTAD: reference panel based annotation of nested topologically associating domains
Yanlin Zhang
Rola Dali
Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests… (voir plus) a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-025-03568-9.
Topological mapping for traversability-aware long-range navigation in off-road terrain
Autonomous robots navigating in off-road terrain like forests open new opportunities for automation. While off-road navigation has been stud… (voir plus)ied, existing work often relies on clearly delineated pathways. We present a method allowing for long-range planning, exploration and low-level control in unknown off-trail forest terrain, using vision and GPS only. We represent outdoor terrain with a topological map, which is a set of panoramic snapshots connected with edges containing traversability information. A novel traversability analysis method is demonstrated, predicting the existence of a safe path towards a target in an image. Navigating between nodes is done using goal-conditioned behavior cloning, leveraging the power of a pretrained vision transformer. An exploration planner is presented, efficiently covering an unknown off-road area with unknown traversability using a frontiers-based approach. The approach is successfully deployed to autonomously explore two 400 meters squared forest sites unseen during training, in difficult conditions for navigation.
Beyond Scalar Rewards: An Axiomatic Framework for Lexicographic MDPs
FedWeight: mitigating covariate shift of federated learning on electronic health records data through patients re-weighting
Mike He Zhu
Na Li
Xiaoxiao Li
Dianbo Liu
Latent Veracity Inference for Identifying Errors in Stepwise Reasoning
Jean-Pierre R. Falet
Oliver E. Richardson
Moksh J. Jain
Sungsoo Ahn
Chain-of-Thought (CoT) reasoning has advanced the capabilities and transparency of language models (LMs); however, reasoning chains can cont… (voir plus)ain inaccurate statements that reduce performance and trustworthiness. To address this, we propose to augment each reasoning step in a CoT with a latent veracity (or correctness) variable. To efficiently explore this expanded space, we introduce Veracity Search (VS), a discrete search algorithm over veracity assignments. It performs otherwise intractable inference in the posterior distribution over latent veracity values by leveraging the LM's joint likelihood over veracity and the final answer as a proxy reward. This efficient inference-time verification method facilitates supervised fine-tuning of an Amortized Veracity Inference (AVI) machine by providing pseudo-labels for veracity. AVI generalizes VS, enabling accurate zero-shot veracity inference in novel contexts. Empirical results demonstrate that VS reliably identifies errors in logical (ProntoQA), mathematical (GSM8K), and commonsense (CommonsenseQA) reasoning benchmarks, with AVI achieving comparable zero-shot accuracy. Finally, we demonstrate the utility of latent veracity inference for providing feedback during self-correction and self-improvement.
Search-Based Correction of Reasoning Chains for Language Models
Jean-Pierre R. Falet
Oliver E. Richardson
Moksh J. Jain
Sungsoo Ahn