Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Generalization of deep learning models for hepatic steatosis grading using B-mode ultrasound images
Heterogeneous ensemble prediction model of CO emission concentration in municipal solid waste incineration process using virtual data and real data hybrid-driven
Recently, there has been increasing interest in the challenge of how to discriminatively vectorize graphs. To address this, we propose a met… (voir plus)hod called Iterative Graph Self-Distillation (IGSD) which learns graph-level representation in an unsupervised manner through instance discrimination using a self-supervised contrastive learning approach. IGSD involves a teacher-student distillation process that uses graph diffusion augmentations and constructs the teacher model using an exponential moving average of the student model. The intuition behind IGSD is to predict the teacher network representation of the graph pairs under different augmented views. As a natural extension, we also apply IGSD to semi-supervised scenarios by jointly regularizing the network with both supervised and self-supervised contrastive loss. Finally, we show that fine-tuning the IGSD-trained models with self-training can further improve graph representation learning. Empirically, we achieve significant and consistent performance gain on various graph datasets in both unsupervised and semi-supervised settings, which well validates the superiority of IGSD.
2024-03-01
IEEE Transactions on Knowledge and Data Engineering (publié)
The « jingle-jangle fallacy » of empathy: Delineating affective, cognitive and motor components of empathy from behavioral synchrony using a virtual agent
Assessing the quality of summarizers poses significant challenges. In response, we propose a novel task-oriented evaluation approach that as… (voir plus)sesses summarizers based on their capacity to produce summaries that are useful for downstream tasks, while preserving task outcomes. We theoretically establish a direct relationship between the resulting error probability of these tasks and the mutual information between source texts and generated summaries. We introduce