Publications

E(3)-Equivariant Mesh Neural Networks
Thuan Nguyen Anh Trang
Khang Nhat Ngo
Daniel Levy
Thieu Vo
Truong Son Hy
Triangular meshes are widely used to represent three-dimensional objects. As a result, many recent works have addressed the need for geometr… (voir plus)ic deep learning on 3D meshes. However, we observe that the complexities in many of these architectures do not translate to practical performance, and simple deep models for geometric graphs are competitive in practice. Motivated by this observation, we minimally extend the update equations of E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face information and further improve it to account for long-range interactions through a hierarchy. The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing. Our implementation is available at https://github.com/HySonLab/EquiMesh.
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation
Divyat Mahajan
Brady Neal
Vasilis Syrgkanis
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estima… (voir plus)tion under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Enhancing Security and Energy Efficiency of Cyber-Physical Systems using Deep Reinforcement Learning
Saeid Jamshidi
Ashkan Amirnia
Amin Nikanjam
An Evaluation of Language Models for Hyperpartisan Ideology Detection in Persian Twitter
Sahar Omidi Shayegan
Isar Nejadgholi
Kellin Pelrine
Hao Yu
Sacha Lévy
Zachary Yang
Jean-François Godbout
Large Language Models (LLMs) have shown significant promise in various tasks, including identifying the political beliefs of English-speakin… (voir plus)g social media users from their posts. However, assessing LLMs for this task in non-English languages remains unexplored. In this work, we ask to what extent LLMs can predict the political ideologies of users in Persian social media. To answer this question, we first acknowledge that political parties are not well-defined among Persian users, and therefore, we simplify the task to a much simpler task of hyperpartisan ideology detection. We create a new benchmark and show the potential and limitations of both open-source and commercial LLMs in classifying the hyper-partisan ideologies of users. We compare these models with smaller fine-tuned models, both on the Persian language (ParsBERT) and translated data (RoBERTa), showing that they considerably outperform generative LLMs in this task. We further demonstrate that the performance of the generative LLMs degrades when classifying users based on their tweets instead of their bios and even when tweets are added as additional information, whereas the smaller fine-tuned models are robust and achieve similar performance for all classes. This study is a first step toward political ideology detection in Persian Twitter, with implications for future research to understand the dynamics of ideologies in Persian social media.
An Exact Method for (Constrained) Assortment Optimization Problems with Product Costs
Markus Leitner
Roberto Roberti
Claudio Sole
Exploring the digital divide: results of a survey informing mobile application development
Maira Corinne Claudio
Zachary Rehany
Katerina Stachtari
Elena Guadagno
Esli Osmanlliu
Introduction Mobile health apps risk widening health disparities if they overlook digital inclusion. The digital divide, encompassing access… (voir plus), familiarity, and readiness, poses a significant barrier to medical interventions. Existing literature lacks exploration of the digital divide's contributing factors. Hence, data are needed to comprehend the challenges in developing inclusive health apps. Methods We created a survey to gauge internet and smartphone access, smartphone familiarity, and readiness for using mobile health apps among caregivers of pediatric patients in tertiary care. Open-ended questions solicited feedback and suggestions on mobile health applications. Responses were categorized by similarity and compared. Developed with patient partners, the survey underwent cognitive testing and piloting for accuracy. Results Data from 209 respondents showed that 23% were affected by the digital divide, mainly due to unfamiliarity with digital skills. Among 49 short text responses about health app concerns, 31 mentioned security and confidentiality, with 7 mentioning the impersonal nature of such apps. Desired features included messaging healthcare providers, scheduling, task reminders, and simplicity. Conclusions This study underscores a digital divide among caregivers of pediatric patients, with nearly a quarter affected primarily due to a lack of digital comfort. Respondents emphasized user-friendliness and online security for health apps. Future apps should prioritize digital inclusion by addressing the significant barriers and carefully considering patient and family concerns.
Exploring validation metrics for offline model-based optimisation
Christopher Beckham
Alexandre Piché
David Vazquez
In offline model-based optimisation (MBO) we are interested in using machine learning to de-sign candidates that maximise some measure of d… (voir plus)esirability through an expensive but real-world scoring process. Offline MBO tries to approximate this expensive scoring function and use that to evaluate generated designs, however evaluation is non-exact because one approximation is being evaluated with another. Instead, we ask ourselves: if we did have the real world scoring function at hand, what cheap-to-compute validation metrics would correlate best with this? Since the real-world scoring function is available for simulated MBO datasets, insights obtained from this can be transferred over to real-world offline MBO tasks where the real-world scoring function is expensive to compute. To address this, we propose a conceptual evaluation framework that is amenable to measuring extrapolation, and apply this to conditional denoising diffusion models. Empirically, we find that two validation metrics – agreement and Frechet distance – correlate quite well with the ground truth. When there is high variability in conditional generation, feedback is required in the form of an approximated version of the real-world scoring function. Furthermore, we find that generating high-scoring samples may require heavily weighting the generative model in favour of sample quality, potentially at the cost of sample diversity.
Fairness Through Domain Awareness: Mitigating Popularity Bias For Music Discovery
Rebecca Salganik
As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast… (voir plus) musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.
Game Theoretical Formulation for Residential Community Microgrid via Mean Field Theory: Proof of Concept
Mohamad Aziz
Issmail ElHallaoui
Incentive-based demand response aggregators are widely recognized as a powerful strategy to increase the flexibility of residential communit… (voir plus)y MG (RCM) while allowing consumers’ assets to participate in the operation of the power system in critical peak times. RCM implementing demand response approaches are of high interest as collectively, they have a high impact on shaping the demand curve during peak time while providing a wide range of economic and technical benefits to consumers and utilities. The penetration of distributed energy resources such as battery energy storage and photovoltaic systems introduces additional flexibility to manage the community loads and increase revenue. This letter proposes a game theoretical formulation for an incentive-based residential community microgrid, where an incentive-based pricing mechanism is developed to encourage peak demand reduction and share the incentive demand curve with the residential community through the aggregator. The aggregator’s objective is to maximize the welfare of the residential community by finding the optimal community equilibrium electricity price. Each household communicates with each other and with the distributed system operator (DSO) through the aggregator and aims to minimize the local electricity cost.
An improved column-generation-based matheuristic for learning classification trees
Krunal Kishor Patel
Guy Desaulniers
An Improved Neuro-Symbolic Architecture to Fine-Tune Generative AI Systems
Chao Yin
Gilles Pesant
Improving the Generalizability and Robustness of Large-Scale Traffic Signal Control
Tianyu Shi
François-Xavier Devailly
Denis Larocque
A number of deep reinforcement-learning (RL) approaches propose to control traffic signals. Compared to traditional approaches, RL approache… (voir plus)s can learn from higher-dimensionality input road and vehicle sensors and better adapt to varying traffic conditions resulting in reduced travel times (in simulation). However, these RL methods require training from massive traffic sensor data. To offset this relative inefficiency, some recent RL methods have the ability to first learn from small-scale networks and then generalize to unseen city-scale networks without additional retraining (zero-shot transfer). In this work, we study the robustness of such methods along two axes. First, sensor failures and GPS occlusions create missing-data challenges and we show that recent methods remain brittle in the face of these missing data. Second, we provide a more systematic study of the generalization ability of RL methods to new networks with different traffic regimes. Again, we identify the limitations of recent approaches. We then propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble. Building upon the state-of-the-art previous model which uses a decentralized approach for large-scale traffic signal control with graph convolutional networks (GCNs), we first learn models using a distributional reinforcement learning (DisRL) approach. In particular, we use implicit quantile networks (IQN) to model the state-action return distribution with quantile regression. For traffic signal control problems, an ensemble of standard RL and DisRL yields superior performance across different scenarios, including different levels of missing sensor data and traffic flow patterns. Furthermore, the learning scheme of the resulting model can improve zero-shot transferability to different road network structures, including both synthetic networks and real-world networks (e.g., Luxembourg, Manhattan). We conduct extensive experiments to compare our approach to multi-agent reinforcement learning and traditional transportation approaches. Results show that the proposed method improves robustness and generalizability in the face of missing data, varying road networks, and traffic flows.