Purpose The depth within the body, small diameter, long length, and varying tissue surrounding the spinal cord impose specific consideration
… (voir plus)s when designing radiofrequency coils. The optimal coil configuration for 7 T cervical spinal cord MRI is unknown and, currently, there are very few coil options. The purpose of this work was (1) to establish a quality control protocol for evaluating 7 T cervical spinal cord coils and (2) to use that protocol to evaluate the performance of 4 different coil designs. Methods Three healthy volunteers and a custom anthropomorphic phantom (the traveling spines cohort) were scanned at seven 7 T imaging centers using a common protocol and each center’s specific cervical spinal cord coil. Four different coil designs were tested (two in-house, one Rapid Biomedical, and one MRI.TOOLS design). Results The Rapid Biomedical coil was found to have the highest B1+ efficiency, whereas one of the in-house designs (NeuroPoly Lab) had the highest SNR and the largest spinal cord coverage. The MRI.TOOLS coil had the most uniform B1+ profile along the cervical spinal cord; however, it was limited in its ability to provide the requested flip angles (especially for larger individuals). The latter was also the case for the second in-house coil (MSSM). Conclusion The results of this study serve as a guide for the spinal cord MRI community in selecting the most suitable coil based on specific requirements and offer a standardized protocol for assessing future coils.