PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taiga
Francesco Visin
David Vazquez
Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representatio… (voir plus)n and model global structure well but have difficulty capturing small details. PixelCNN models details very well, but lacks a latent code and is difficult to scale for capturing large structures. We present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. Our model requires very few expensive autoregressive layers compared to PixelCNN and learns latent codes that are more compressed than a standard VAE while still capturing most non-trivial structure. Finally, we extend our model to a hierarchy of latent variables at different scales. Our model achieves state-of-the-art performance on binarized MNIST, competitive performance on 64 × 64 ImageNet, and high-quality samples on the LSUN bedrooms dataset.
PROCLIVITY PATTERNS IN ATTRIBUTED GRAPHS
Dhivya Eswaran
Christos Faloutsos
Artur Dubrawski
Many real world applications include information on both attributes of individual entities as well as relations between them, while there ex… (voir plus)ists an interplay between these attributes and relations. For example, in a typical social network, the similarity of individuals’ characteristics motivates them to form relations, a.k.a. social selection; whereas the characteristics of individuals may be affected by the characteristics of their relations, a.k.a. social influence. We can measure proclivity in networks by quantifying the correlation of nodal attributes and the structure [1]. Here, we are interested in a more fundamental study, to extend the basic statistics defined for graphs and draw parallels for the attributed graphs. More formally, an attributed graph is denoted by (A,X); where An×n is the adjacency matrix and encodes the relationships between the n nodes, and Xn×k is the attributes matrix –each row shows the feature vector of the corresponding node. Degree of a node encodes the number of its neighbors, computed as ki = ∑ j Aij . We can extend this notion to networks with binary attributes to the number of neighbors which share a particular attribute x, i.e. ki(x) = ∑ j Aijδ(Xj , x); where δ(Xj , x) = 1 iff node j has attribute x. Similar to the simple graphs, where the degree distribution is studied and showed to be heavy tail, here we can look at: 1) the degree distributions per attribute, 2) the joint probability distribution of any pair of attributes. Moreover, if we assume A(x1, x2) is the induced subgraph (or masked matrix of edges) with endpoints of values (x1, x2), i.e., A(x1, x2) = Aijδ(Xi, x1)δ(Xj , x2), then we can study and compare these distributions for the induced subgraph per each pair of attribute values. For example, Figure 1 shows the same general trend in the distribution of the original graph and the three possible induced subgraph.
Recurrent Batch Normalization
Tim Cooijmans
Nicolas Ballas
César Laurent
Caglar Gulcehre
We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works… (voir plus) only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling and question answering. Our empirical results show that our batch-normalized LSTM consistently leads to faster convergence and improved generalization.
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
Soroush Mehri
Kundan Kumar
Ishaan Gulrajani
Rithesh Kumar
Shubham Jain
Jose Sotelo
In this paper we propose a novel model for unconditional audio generation task that generates one audio sample at a time. We show that our m… (voir plus)odel which profits from combining memory-less modules, namely autoregressive multilayer perceptron, and stateful recurrent neural networks in a hierarchical structure is de facto powerful to capture the underlying sources of variations in temporal domain for very long time on three datasets of different nature. Human evaluation on the generated samples indicate that our model is preferred over competing models. We also show how each component of the model contributes to the exhibited performance.
Sequentialized Sampling Importance Resampling and Scalable IWAE
Chin-Wei Huang
We propose a new sequential algorithm for Sampling Importance Resampling. The algorithm serves as a solution to expensive evaluation of impo… (voir plus)rtance weight, and can be interpreted as stochastically and iteratively refining the particles by correcting them towards the target distribution as pool size increases. We apply this algorithm to variational inference with Importance Weighted Lower Bound and propose a memory-scalable training procedure 1 that implicitly improves the variational proposal. 1 Sequentializing Sampling Importance Resampling 1.1 Sampling Importance Resampling Given an unnormalized target distribution p̃(x) and proposal distribution q(x), the Sampling Importance Resampling (SIR) proceeds as follows: 1. draw xi for 1 ≤ i ≤ n from q(x) 2. calculate the importance weight wi = p̃(xi) q(xi) 3. calculate the normalized importance weight w̄i = wi ∑ i wi 4. draw index variable yj ∼ mul(w̄1, ..., w̄n) for 1 ≤ j ≤ m The density of the set of resampled particles xy1 , ..., xym should resemble the pdf of the target distribution, and the new samples will be approximately distributed by p(x) (Bishop, 2007). On average, the samples can be improved by increasing the pool size n, and becomes corrected when n→∞. The procedure is visualized in Figure 1a. 1.2 SeqSIR The above procedure can be combined with the idea of reservoir sampling, so that we need not evaluate all n samples at the same time, which will be an issue when n is large or when evaluation of a sample (i.e. computation of wi) is expensive. The intuition is to keep a running sum of the importance weights while we evaluate the pool samples sequentially, and then decide to keep the old sample or replace it with the new one based on the ratio of the new sample’s importance weight to the running sum. This is what we call Sequentialized Sampling Importance Resampling (SEQSIR), which is summarized in Algorithm 1. See Figure 1b for illustration. Note that density and importance weight are computed on log scale to deal with numerical instability, and log-sum-exp operation (LSE) is used in place of addition to calculate the running sum of See https://github.com/CW-Huang/SeqIWAE for implementation. Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA. Algorithm 1 Sequentialized Sampling Importance Resampling and Stochastic Iterative Refinement procedure SEQSIR ( logp, logq . unnormalized target density function and proposal density function ss . n samples to be evaluated ) A←−∞ . initialize accumulated sum of importance weight on log scale s_old← 0 . initialize sample n← len([s1,...,sn]) for i=1,...,n do s_new = ss[i] A, s_old← STOCHREFINE(logp, logq, A, s_old, s_new) return s_old procedure STOCHREFINE ( logp, logq . unnormalized target density function and proposal density function A . accumulated sum of importance weight on log scale s_old, s_new . old and new samples ) w_new← logp(s_new) logq(s_new) A← LSE(A, w_new) u← unif(0,1) if w_new A >= log u then return A, s_new else return A, s_old
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Marc-Alexandre Côté
Nan Rosemary Ke
Many efforts have been devoted to training generative latent variable models with autoregressive decoders, such as recurrent neural networks… (voir plus) (RNN). Stochastic recurrent models have been successful in capturing the variability observed in natural sequential data such as speech. We unify successful ideas from recently proposed architectures into a stochastic recurrent model: each step in the sequence is associated with a latent variable that is used to condition the recurrent dynamics for future steps. Training is performed with amortized variational inference where the approximate posterior is augmented with a RNN that runs backward through the sequence. In addition to maximizing the variational lower bound, we ease training of the latent variables by adding an auxiliary cost which forces them to reconstruct the state of the backward recurrent network. This provides the latent variables with a task-independent objective that enhances the performance of the overall model. We found this strategy to perform better than alternative approaches such as KL annealing. Although being conceptually simple, our model achieves state-of-the-art results on standard speech benchmarks such as TIMIT and Blizzard and competitive performance on sequential MNIST. Finally, we apply our model to language modeling on the IMDB dataset where the auxiliary cost helps in learning interpretable latent variables. Source Code: this https URL
Diet Networks: Thin Parameters for Fat Genomic
pierre luc carrier
Akram Erraqabi
Tristan Sylvain
Alex Auvolat
Etienne Dejoie
M. Dubé
Learning tasks such as those involving genomic data often poses a serious challenge: the number of input features can be orders of magnitude… (voir plus) larger than the number of training examples, making it difficult to avoid overfitting, even when using the known regularization techniques. We focus here on tasks in which the input is a description of the genetic variation specific to a patient, the single nucleotide polymorphisms (SNPs), yielding millions of ternary inputs. Improving the ability of deep learning to handle such datasets could have an important impact in precision medicine, where high-dimensional data regarding a particular patient is used to make predictions of interest. Even though the amount of data for such tasks is increasing, this mismatch between the number of examples and the number of inputs remains a concern. Naive implementations of classifier neural networks involve a huge number of free parameters in their first layer: each input feature is associated with as many parameters as there are hidden units. We propose a novel neural network parametrization which considerably reduces the number of free parameters. It is based on the idea that we can first learn or provide a distributed representation for each input feature (e.g. for each position in the genome where variations are observed), and then learn (with another neural network called the parameter prediction network) how to map a feature's distributed representation to the vector of parameters specific to that feature in the classifier neural network (the weights which link the value of the feature to each of the hidden units). We show experimentally on a population stratification task of interest to medical studies that the proposed approach can significantly reduce both the number of parameters and the error rate of the classifier.
HeMIS: Hetero-Modal Image Segmentation
Mohammad Havaei
Nicolas Guizard
A Multisensor Multi-Bernoulli Filter
Augustin-Alexandru Saucan
In this paper, we derive a multisensor multi-Bernoulli (MS-MeMBer) filter for multitarget tracking. Measurements from multiple sensors are e… (voir plus)mployed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle filter implementations. Numerical simulations conducted for both linear-Gaussian and nonlinear models highlight the improved accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multisensor cardinalized probability hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of detection.
Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks
Ying Zhang
Mohammad Pezeshki
Philemon Brakel
Saizheng Zhang
César Laurent
Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic fe… (voir plus)atures for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
Iulian V. Serban
Alberto García-Durán
Caglar Gulcehre
Sungjin Ahn
Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. Howeve… (voir plus)r, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.
HeMIS: Hetero-Modal Image Segmentation
Mohammad Havaei
Nicolas Guizard