Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Automatic Differentiation in Myia
Olivier Breuleux
Bart van Merriënboer
Automatic differentiation is an essential feature of machine learning frameworks. However, its implementation in existing frameworks often h… (voir plus)as limitations. In dataflow programming frameworks such as Theano or TensorFlow the representation used makes supporting higher-order gradients difficult. On the other hand, operator overloading frameworks such as PyTorch are flexible, but do not lend themselves well to optimization. With Myia, we attempt to have the best of both worlds: Building on the work by Pearlmutter and Siskind we implement a first-order gradient operator for a subset of the Python programming language.
In this paper, we derive a multisensor multi-Bernoulli (MS-MeMBer) filter for multitarget tracking. Measurements from multiple sensors are e… (voir plus)mployed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle filter implementations. Numerical simulations conducted for both linear-Gaussian and nonlinear models highlight the improved accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multisensor cardinalized probability hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of detection.
We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neura… (voir plus)l network which learns to transform a simple noise distribution, p(e) = N(0,I), to a distribution q(t) := q(h(e)) over the parameters t of another neural network (the ``primary network). We train q with variational inference, using an invertible h to enable efficient estimation of the variational lower bound on the posterior p(t | D) via sampling. In contrast to most methods for Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approximate posterior with correlations between parameters, while enabling cheap iid sampling of q(t). In practice, Bayesian hypernets provide a better defense against adversarial examples than dropout, and also exhibit competitive performance on a suite of tasks which evaluate model uncertainty, including regularization, active learning, and anomaly detection.
Reliable measures of statistical dependence could potentially be useful tools for learning independent features and performing tasks like so… (voir plus)urce separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual information, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives (Goodfellow et al. 2014, Arjovsky et al. 2017) which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.
In this paper, we study two aspects of the variational autoencoder (VAE): the prior distribution over the latent variables and its correspon… (voir plus)ding posterior. First, we decompose the learning of VAEs into layerwise density estimation, and argue that having a flexible prior is beneficial to both sample generation and inference. Second, we analyze the family of inverse autoregressive flows (inverse AF) and show that with further improvement, inverse AF could be used as universal approximation to any complicated posterior. Our analysis results in a unified approach to parameterizing a VAE, without the need to restrict ourselves to use factorial Gaussians in the latent real space.
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (voir plus)esses of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading compr… (voir plus)ehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction: given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.
2017-09-01
Conference on Empirical Methods in Natural Language Processing (publié)
End-to-end design of dialogue systems has recently become a popular research topic thanks to powerful tools such as encoder-decoder architec… (voir plus)tures for sequence-to-sequence learning. Yet, most current approaches cast human-machine dialogue management as a supervised learning problem, aiming at predicting the next utterance of a participant given the full history of the dialogue. This vision is too simplistic to render the intrinsic planning problem inherent to dialogue as well as its grounded nature , making the context of a dialogue larger than the sole history. This is why only chitchat and question answering tasks have been addressed so far using end-to-end architectures. In this paper, we introduce a Deep Reinforcement Learning method to optimize visually grounded task-oriented dialogues , based on the policy gradient algorithm. This approach is tested on a dataset of 120k dialogues collected through Mechanical Turk and provides encouraging results at solving both the problem of generating natural dialogues and the task of discovering a specific object in a complex picture.
2017-08-19
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (publié)
Generative Adversarial Networks (GANs) have gathered a lot of attention from the computer vision community, yielding impressive results for … (voir plus)image generation. Advances in the adversarial generation of natural language from noise however are not commensurate with the progress made in generating images, and still lag far behind likelihood based methods. In this paper, we take a step towards generating natural language with a GAN objective alone. We introduce a simple baseline that addresses the discrete output space problem without relying on gradient estimators and show that it is able to achieve state-of-the-art results on a Chinese poem generation dataset. We present quantitative results on generating sentences from context-free and probabilistic context-free grammars, and qualitative language modeling results. A conditional version is also described that can generate sequences conditioned on sentence characteristics.
2017-08-01
Proceedings of the 2nd Workshop on Representation Learning for NLP (publié)