Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et … (voir plus)al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MT… (voir plus)L must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer based Hypernetwork Adapter consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets.
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state during plan… (voir plus)ning. The agent uses a bottleneck mechanism over a set-based representation to force the number of entities to which the agent attends at each planning step to be small. In experiments, we investigate the bottleneck mechanism with several sets of customized environments featuring different challenges. We consistently observe that the design allows the planning agents to generalize their learned task-solving abilities in compatible unseen environments by attending to the relevant objects, leading to better out-of-distribution generalization performance.
In this paper, we investigate the problem of system identification for autonomous switched linear systems with complete state observations.… (voir plus) We propose switched least squares method for the identification for switched linear systems, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-dependent rate of convergence shows that, almost surely, the system identification error is O (cid:0)(cid:112) log( T ) /T (cid:1) where T is the time horizon. These results show that our method for switched linear systems has the same rate of convergence as least squares method for non-switched linear systems. We compare our results with those in the literature. We present numerical examples to illustrate the performance of the proposed system identification method.
Modularity is a compelling solution to continual learning (CL), the problem of modeling sequences of related tasks. Learning and then compos… (voir plus)ing modules to solve different tasks provides an abstraction to address the principal challenges of CL including catastrophic forgetting, backward and forward transfer across tasks, and sub-linear model growth. We introduce local module composition (LMC), an approach to modular CL where each module is provided a local structural component that estimates a module's relevance to the input. Dynamic module composition is performed layer-wise based on local relevance scores. We demonstrate that agnosticity to task identities (IDs) arises from (local) structural learning that is module-specific as opposed to the task- and/or model-specific as in previous works, making LMC applicable to more CL settings compared to previous works. In addition, LMC also tracks statistics about the input distribution and adds new modules when outlier samples are detected. In the first set of experiments, LMC performs favorably compared to existing methods on the recent Continual Transfer-learning Benchmark without requiring task identities. In another study, we show that the locality of structural learning allows LMC to interpolate to related but unseen tasks (OOD), as well as to compose modular networks trained independently on different task sequences into a third modular network without any fine-tuning. Finally, in search for limitations of LMC we study it on more challenging sequences of 30 and 100 tasks, demonstrating that local module selection becomes much more challenging in presence of a large number of candidate modules. In this setting best performing LMC spawns much fewer modules compared to an oracle based baseline, however, it reaches a lower overall accuracy. The codebase is available under https://github.com/oleksost/LMC.
Reinforcement learning methods trained on few environments rarely learn policies that generalize to unseen environments. To improve generali… (voir plus)zation, we incorporate the inherent sequential structure in reinforcement learning into the representation learning process. This approach is orthogonal to recent approaches, which rarely exploit this structure explicitly. Specifically, we introduce a theoretically motivated policy similarity metric (PSM) for measuring behavioral similarity between states. PSM assigns high similarity to states for which the optimal policies in those states as well as in future states are similar. We also present a contrastive representation learning procedure to embed any state similarity metric, which we instantiate with PSM to obtain policy similarity embeddings (PSEs). We demonstrate that PSEs improve generalization on diverse benchmarks, including LQR with spurious correlations, a jumping task from pixels, and Distracting DM Control Suite.
Flow-based models are powerful tools for designing probabilistic models with tractable density. This paper introduces Convex Potential Flows… (voir plus) (CP-Flow), a natural and efficient parameterization of invertible models inspired by the optimal transport (OT) theory. CP-Flows are the gradient map of a strongly convex neural potential function. The convexity implies invertibility and allows us to resort to convex optimization to solve the convex conjugate for efficient inversion. To enable maximum likelihood training, we derive a new gradient estimator of the log-determinant of the Jacobian, which involves solving an inverse-Hessian vector product using the conjugate gradient method. The gradient estimator has constant-memory cost, and can be made effectively unbiased by reducing the error tolerance level of the convex optimization routine. Theoretically, we prove that CP-Flows are universal density approximators and are optimal in the OT sense. Our empirical results show that CP-Flow performs competitively on standard benchmarks of density estimation and variational inference.
Pretrained language models have significantly 001 improved the performance of down-stream 002 language understanding tasks, including ex-00… (voir plus)3 tractive question answering, by providing 004 high-quality contextualized word embeddings. 005 However, training question answering models 006 still requires large amounts of annotated data 007 for specific domains. In this work, we pro-008 pose a cooperative, self-play learning frame-009 work, REGEX, for automatically generating 010 more non-trivial question-answer pairs to im-011 prove model performance. REGEX is built 012 upon a masked answer extraction task with an 013 interactive learning environment containing an 014 answer entity REcognizer, a question Gener-015 ator, and an answer EXtractor. Given a pas-016 sage with a masked entity, the generator gen-017 erates a question around the entity, and the 018 extractor is trained to extract the masked en-019 tity with the generated question and raw texts. 020 The framework allows the training of question 021 generation and answering models on any text 022 corpora without annotation. We further lever-023 age a reinforcement learning technique to re-024 ward generating high-quality questions and to 025 improve the answer extraction model’s perfor-026 mance. Experiment results show that REGEX 027 outperforms the state-of-the-art (SOTA) pre-028 trained language models and transfer learning 029 approaches on standard question-answering 030 benchmarks, and yields the new SOTA per-031 formance under given model size and transfer 032 learning settings. 033
Data-Efficient Reinforcement Learning with Self-Predictive Representations
While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interacti… (voir plus)on with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Self-Predictive Representations (SPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent’s parameters and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent’s representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.415 on Atari in a setting limited to 100k steps of environment interaction, which represents a 55% relative improvement over the previous state-of-the-art. Notably, even in this limited data regime, SPR exceeds expert human scores on 7 out of 26 games. We’ve made the code associated with this work available at https://github.com/mila-iqia/spr.
Data efficiency poses a major challenge for deep reinforcement learning. We approach this issue from the perspective of self-supervised repr… (voir plus)esentation learning, leveraging reward-free exploratory data to pretrain encoder networks. We employ a novel combination of latent dynamics modelling and goal-reaching objectives, which exploit the inherent structure of data in reinforcement learning. We demonstrate that our method scales well with network capacity and pretraining data. When evaluated on the Atari 100k data-efficiency benchmark, our approach significantly outperforms previous methods combining unsupervised pretraining with task-specific finetuning, and approaches human-level performance.
Deep LDA-Pruned Nets for Efficient Facial Gender Classification
Many real-time tasks, such as human-computer interac-tion, require fast and efficient facial gender classification. Although deep CNN nets… (voir plus) have been very effective for a mul-titude of classification tasks, their high space and time de-mands make them impractical for personal computers and mobile devices without a powerful GPU. In this paper, we develop a 16-layer, yet lightweight, neural network which boosts efficiency while maintaining high accuracy. Our net is pruned from the VGG-16 model [35] starting from the last convolutional (conv) layer where we find neuron activations are highly uncorrelated given the gender. Through Fisher’s Linear Discriminant Analysis (LDA) [8], we show that this high decorrelation makes it safe to discard directly last conv layer neurons with high within-class variance and low between-class variance. Combined with either Support Vector Machines (SVM) or Bayesian classification, the reduced CNNs are capable of achieving comparable (or even higher) accuracies on the LFW and CelebA datasets than the original net with fully connected layers. On LFW, only four Conv5 3 neurons are able to maintain a comparably high recognition accuracy, which results in a reduction of total network size by a factor of 70X with a 11 fold speedup. Comparisons with a state-of-the-art pruning method [12] (as well as two smaller nets [20, 24]) in terms of accuracy loss and convolutional layers pruning rate are also provided.