Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Generative Adversarial Networks (GANs) can successfully approximate a probability distribution and produce realistic samples. However, open … (voir plus)questions such as sufficient convergence conditions and mode collapse still persist. In this paper, we build on existing work in the area by proposing a novel framework for training the generator against an ensemble of discriminator networks, which can be seen as a one-student/multiple-teachers setting. We formalize this problem within the full-information adversarial bandit framework, where we evaluate the capability of an algorithm to select mixtures of discriminators for providing the generator with feedback during learning. To this end, we propose a reward function which reflects the progress made by the generator and dynamically update the mixture weights allocated to each discriminator. We also draw connections between our algorithm and stochastic optimization methods and then show that existing approaches using multiple discriminators in literature can be recovered from our framework. We argue that less expressive discriminators are smoother and have a general coarse grained view of the modes map, which enforces the generator to cover a wide portion of the data distribution support. On the other hand, highly expressive discriminators ensure samples quality. Finally, experimental results show that our approach improves samples quality and diversity over existing baselines by effectively learning a curriculum. These results also support the claim that weaker discriminators have higher entropy improving modes coverage.
2019-07-17
Proceedings of the AAAI Conference on Artificial Intelligence (publié)
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish durin… (voir plus)g training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by skipping information through a memory mechanism. We propose a new recurrent architecture (Non-saturating Recurrent Unit; NRU) that relies on a memory mechanism but forgoes both saturating activation functions and saturating gates, in order to further alleviate vanishing gradients. In a series of synthetic and real world tasks, we demonstrate that the proposed model is the only model that performs among the top 2 models across all tasks with and without long-term dependencies, when compared against a range of other architectures.
2019-07-17
Proceedings of the AAAI Conference on Artificial Intelligence (publié)
Coherence is an important aspect of text quality and is crucial for ensuring its readability. One important limitation of existing coherence… (voir plus) models is that training on one domain does not easily generalize to unseen categories of text. Previous work advocates for generative models for cross-domain generalization, because for discriminative models, the space of incoherent sentence orderings to discriminate against during training is prohibitively large. In this work, we propose a local discriminative neural model with a much smaller negative sampling space that can efficiently learn against incorrect orderings. The proposed coherence model is simple in structure, yet it significantly outperforms previous state-of-art methods on a standard benchmark dataset on the Wall Street Journal corpus, as well as in multiple new challenging settings of transfer to unseen categories of discourse on Wikipedia articles.
2019-07-01
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (publié)
We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-inte… (voir plus)rpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.
2019-07-01
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (publié)
Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily ad… (voir plus)apted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.
2019-07-01
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (publié)
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). G… (voir plus)enerative adversarial networks (GANs) are powerful generative models which have been successfully applied to learn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminator's objective is the
The ability to understand logical relationships between sentences is an important task in language understanding. To aid in progress for thi… (voir plus)s task, researchers have collected datasets for machine learning and evaluation of current systems. However, like in the crowdsourced Visual Question Answering (VQA) task, some biases in the data inevitably occur. In our experiments, we find that performing classification on just the hypotheses on the SNLI dataset yields an accuracy of 64%. We analyze the bias extent in the SNLI and the MultiNLI dataset, discuss its implication, and propose a simple method to reduce the biases in the datasets.
We advocate the use of a notion of entropy that reflects the relative abundances of the symbols in an alphabet, as well as the similarities … (voir plus)between them. This concept was originally introduced in theoretical ecology to study the diversity of ecosystems. Based on this notion of entropy, we introduce geometry-aware counterparts for several concepts and theorems in information theory. Notably, our proposed divergence exhibits performance on par with state-of-the-art methods based on the Wasserstein distance, but enjoys a closed-form expression that can be computed efficiently. We demonstrate the versatility of our method via experiments on a broad range of domains: training generative models, computing image barycenters, approximating empirical measures and counting modes.
The speed at which one can minimize an expected loss using stochastic methods depends on two properties: the curvature of the loss and the v… (voir plus)ariance of the gradients. While most previous works focus on one or the other of these properties, we explore how their interaction affects optimization speed. Further, as the ultimate goal is good generalization performance, we clarify how both curvature and noise are relevant to properly estimate the generalization gap. Realizing that the limitations of some existing works stems from a confusion between these matrices, we also clarify the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients.
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (voir plus) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (voir plus) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
Social media sites are becoming a key factor in politics. These platforms are easy to manipulate for the purpose of distorting information s… (voir plus)pace to confuse and distract voters. Past works to identify disruptive patterns are mostly focused on analyzing the content of tweets. In this study, we jointly embed the information from both user posted content as well as a user's follower network, to detect groups of densely connected users in an unsupervised fashion. We then investigate these dense sub-blocks of users to flag anomalous behavior. In our experiments, we study the tweets related to the upcoming 2019 Canadian Elections, and observe a set of densely-connected users engaging in local politics in different provinces, and exhibiting troll-like behavior.