Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Adversarial target-invariant representation learning for domain generalization
In many applications of machine learning, the training and test set data come from different distributions, or domains. A number of domain g… (voir plus)eneralization strategies have been introduced with the goal of achieving good performance on out-of-distribution data. In this paper, we propose an adversarial approach to the problem. We propose a process that enforces pair-wise domain invariance while training a feature extractor over a diverse set of domains. We show that this process ensures invariance to any distribution that can be expressed as a mixture of the training domains. Following this insight, we then introduce an adversarial approach in which pair-wise divergences are estimated and minimized. Experiments on two domain generalization benchmarks for object recognition (i.e., PACS and VLCS) show that the proposed method yields higher average accuracy on the target domains in comparison to previously introduced adversarial strategies, as well as recently proposed methods based on learning invariant representations.
Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored o… (voir plus)n many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative data.
2019-11-03
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (publié)
Supervised learning results typically rely on assumptions of i.i.d. data. Unfortunately, those assumptions are commonly violated in practice… (voir plus). In this work, we tackle this problem by focusing on domain generalization: a formalization where the data generating process at test time may yield samples from never-before-seen domains (distributions). Our work relies on a simple lemma: by minimizing a notion of discrepancy between all pairs from a set of given domains, we also minimize the discrepancy between any pairs of mixtures of domains. Using this result, we derive a generalization bound for our setting. We then show that low risk over unseen domains can be achieved by representing the data in a space where (i) the training distributions are indistinguishable, and (ii) relevant information for the task at hand is preserved. Minimizing the terms in our bound yields an adversarial formulation which estimates and minimizes pairwise discrepancies. We validate our proposed strategy on standard domain generalization benchmarks, outperforming a number of recently introduced methods. Notably, we tackle a real-world application where the underlying data corresponds to multi-channel electroencephalography time series from different subjects, each considered as a distinct domain.
Unsupervised domain transfer is the task of transferring or translating samples from a source distribution to a different target distributio… (voir plus)n. Current solutions unsupervised domain transfer often operate on data on which the modes of the distribution are well-matched, for instance have the same frequencies of classes between source and target distributions. However, these models do not perform well when the modes are not well-matched, as would be the case when samples are drawn independently from two different, but related, domains. This mode imbalance is problematic as generative adversarial networks (GANs), a successful approach in this setting, are sensitive to mode frequency, which results in a mismatch of semantics between source samples and generated samples of the target distribution. We propose a principled method of re-weighting training samples to correct for such mass shift between the transferred distributions, which we call batch weight. We also provide rigorous probabilistic setting for domain transfer and new simplified objective for training transfer networks, an alternative to complex, multi-component loss functions used in the current state-of-the art image-to-image translation models. The new objective stems from the discrimination of joint distributions and enforces cycle-consistency in an abstract, high-level, rather than pixel-wise, sense. Lastly, we experimentally show the effectiveness of the proposed methods in several image-to-image translation tasks.
2019-11-02
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (publié)
Predicting future frames for a video sequence is a challenging generative modeling task. Promising approaches include probabilistic latent v… (voir plus)ariable models such as the Variational Auto-Encoder. While VAEs can handle uncertainty and model multiple possible future outcomes, they have a tendency to produce blurry predictions. In this work we argue that this is a sign of underfitting. To address this issue, we propose to increase the expressiveness of the latent distributions and to use higher capacity likelihood models. Our approach relies on a hierarchy of latent variables, which defines a family of flexible prior and posterior distributions in order to better model the probability of future sequences. We validate our proposal through a series of ablation experiments and compare our approach to current state-of-the-art latent variable models. Our method performs favorably under several metrics in three different datasets.
2019-11-02
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (publié)
Generative adversarial networks (GANs) have ushered in a revolution in image-to-image translation. The development and proliferation of GANs… (voir plus) raises an interesting question: can we train a GAN to remove an object, if present, from an image while otherwise preserving the image? Specifically, can a GAN ``virtually heal'' anyone by turning his medical image, with an unknown health status (diseased or healthy), into a healthy one, so that diseased regions could be revealed by subtracting those two images? Such a task requires a GAN to identify a minimal subset of target pixels for domain translation, an ability that we call fixed-point translation, which no GAN is equipped with yet. Therefore, we propose a new GAN, called Fixed-Point GAN, trained by (1) supervising same-domain translation through a conditional identity loss, and (2) regularizing cross-domain translation through revised adversarial, domain classification, and cycle consistency loss. Based on fixed-point translation, we further derive a novel framework for disease detection and localization using only image-level annotation. Qualitative and quantitative evaluations demonstrate that the proposed method outperforms the state of the art in multi-domain image-to-image translation and that it surpasses predominant weakly-supervised localization methods in both disease detection and localization. Implementation is available at https://github.com/jlianglab/Fixed-Point-GAN.
2019-11-02
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (publié)
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused… (voir plus) on generating a single image from available conditioning information in one step. One practical extension beyond one-step generation is a system that generates an image iteratively, conditioned on ongoing linguistic input or feedback. This is significantly more challenging than one-step generation tasks, as such a system must understand the contents of its generated images with respect to the feedback history, the current feedback, as well as the interactions among concepts present in the feedback history. In this work, we present a recurrent image generation model which takes into account both the generated output up to the current step as well as all past instructions for generation. We show that our model is able to generate the background, add new objects, and apply simple transformations to existing objects. We believe our approach is an important step toward interactive generation. Code and data is available at: https://www.microsoft.com/en-us/research/project/generative-neural-visual-artist-geneva/.
2019-11-02
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (publié)
Humans gather information through conversations involving a series of interconnected questions and answers. For machines to assist in inform… (voir plus)ation gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets (e.g., coreference and pragmatic reasoning). We evaluate strong dialogue and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating that there is ample room for improvement. We present CoQA as a challenge to the community at https://stanfordnlp.github.io/coqa.
2019-11-01
Transactions of the Association for Computational Linguistics (publié)
Sentence position is a strong feature for news summarization, since the lead often (but not always) summarizes the key points of the article… (voir plus). In this paper, we show that recent neural systems excessively exploit this trend, which although powerful for many inputs, is also detrimental when summarizing documents where important content should be extracted from later parts of the article. We propose two techniques to make systems sensitive to the importance of content in different parts of the article. The first technique employs ‘unbiased’ data; i.e., randomly shuffled sentences of the source document, to pretrain the model. The second technique uses an auxiliary ROUGE-based loss that encourages the model to distribute importance scores throughout a document by mimicking sentence-level ROUGE scores on the training data. We show that these techniques significantly improve the performance of a competitive reinforcement learning based extractive system, with the auxiliary loss being more powerful than pretraining.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
Learning and planning in partially-observable domains is one of the most difficult problems in reinforcement learning. Traditional methods c… (voir plus)onsider these two problems as independent, resulting in a classical two-stage paradigm: first learn the environment dynamics and then plan accordingly. This approach, however, disconnects the two problems and can consequently lead to algorithms that are sample inefficient and time consuming. In this paper, we propose a novel algorithm that combines learning and planning together. Our algorithm is closely related to the spectral learning algorithm for predicitive state representations and offers appealing theoretical guarantees and time complexity. We empirically show on two domains that our approach is more sample and time efficient compared to classical methods.
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (voir plus)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)