Scalable Regret for Learning to Control Network-Coupled Subsystems With Unknown Dynamics
Sagar Sudhakara
Ashutosh Nayyar
Yi. Ouyang
In this article, we consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems … (voir plus)connected over a network. Our goal is to minimize and quantify the regret (i.e., loss in performance) of our learning and control strategy with respect to an oracle who knows the system model. Upfront viewing the interconnected subsystems globally and directly using existing LQG learning algorithms for the global system results in a regret that increases super-linearly with the number of subsystems. Instead, we propose a new Thompson sampling-based learning algorithm which exploits the structure of the underlying network. We show that the expected regret of the proposed algorithm is bounded by
Generic acquisition protocol for quantitative MRI of the spinal cord
Eva Alonso‐Ortiz
Mihael Abramovic
Carina Arneitz
Nicole Atcheson
Laura Barlow
Robert L. Barry
Markus Barth
Marco Battiston
Christian Büchel
Matthew D. Budde
Virginie Callot
Anna J. E. Combes
Benjamin De Leener
Maxime Descoteaux
Paulo Loureiro de Sousa
Marek Dostál
Julien Doyon
Adam Dvorak
Falk Eippert … (voir 71 de plus)
Karla R. Epperson
Kevin S. Epperson
Patrick Freund
Jürgen Finsterbusch
Alexandru Foias
Michela Fratini
Issei Fukunaga
Claudia A. M. Gandini Wheeler-Kingshott
Giancarlo Germani
Guillaume Gilbert
Federico Giove
Charley Gros
Francesco Grussu
Akifumi Hagiwara
Pierre-Gilles Henry
Tomáš Horák
Masaaki Hori
James Joers
Kouhei Kamiya
Haleh Karbasforoushan
Miloš Keřkovský
Ali Khatibi
Joo‐Won Kim
Nawal Kinany
Hagen H. Kitzler
Shannon Kolind
Yazhuo Kong
Petr Kudlička
Paul Kuntke
Nyoman D. Kurniawan
Slawomir Kusmia
René Labounek
Maria Marcella Lagana
Cornelia Laule
Christine S. Law
Christophe Lenglet
Tobias Leutritz
Yaou Liu
Sara Llufriu
Sean Mackey
Eloy Martinez-Heras
Loan Mattera
Igor Nestrašil
Kristin P. O’Grady
Nico Papinutto
Daniel Papp
Deborah Pareto
Todd B. Parrish
Anna Pichiecchio
Ferran Prados
Àlex Rovira
Marc J. Ruitenberg
Rebecca S. Samson
Giovanni Savini
Maryam Seif
Alan C. Seifert
Alex K. Smith
Seth A. Smith
Zachary A. Smith
Elisabeth Solana
Yuichi Suzuki
George Tackley
Alexandra Tinnermann
Jan Valošek
Dimitri Van De Ville
Marios C. Yiannakas
K. Weber
Nikolaus Weiskopf
Richard G. Wise
Patrik O. Wyss
Junqian Xu
Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
Eva Alonso‐Ortiz
Mihael Abramovic
Carina Arneitz
Nicole Atcheson
Laura Barlow
Robert L. Barry
Markus Barth
Marco Battiston
Christian Büchel
Matthew D. Budde
Virginie Callot
Anna J. E. Combes
Benjamin De Leener
Maxime Descoteaux
Paulo Loureiro de Sousa
Marek Dostál
Julien Doyon
Adam Dvorak
Falk Eippert … (voir 71 de plus)
Karla R. Epperson
Kevin S. Epperson
Patrick Freund
Jürgen Finsterbusch
Alexandru Foias
Michela Fratini
Issei Fukunaga
Claudia A. M. Gandini Wheeler-Kingshott
Giancarlo Germani
Guillaume Gilbert
Federico Giove
Charley Gros
Francesco Grussu
Akifumi Hagiwara
Pierre-Gilles Henry
Tomáš Horák
Masaaki Hori
James Joers
Kouhei Kamiya
Haleh Karbasforoushan
Miloš Keřkovský
Ali Khatibi
Joo‐Won Kim
Nawal Kinany
Hagen H. Kitzler
Shannon Kolind
Yazhuo Kong
Petr Kudlička
Paul Kuntke
Nyoman D. Kurniawan
Slawomir Kusmia
René Labounek
Maria Marcella Lagana
Cornelia Laule
Christine S. Law
Christophe Lenglet
Tobias Leutritz
Yaou Liu
Sara Llufriu
Sean Mackey
Eloy Martinez-Heras
Loan Mattera
Igor Nestrašil
Kristin P. O’Grady
Nico Papinutto
Daniel Papp
Deborah Pareto
Todd B. Parrish
Anna Pichiecchio
Ferran Prados
Àlex Rovira
Marc J. Ruitenberg
Rebecca S. Samson
Giovanni Savini
Maryam Seif
Alan C. Seifert
Alex K. Smith
Seth A. Smith
Zachary A. Smith
Elisabeth Solana
Y. Suzuki
George Tackley
Alexandra Tinnermann
Jan Valošek
Dimitri Van De Ville
Marios C. Yiannakas
Kenneth A. Weber
Nikolaus Weiskopf
Richard G. Wise
Patrik O. Wyss
Junqian Xu
Forgetting Enhances Episodic Control With Structured Memories
Annik Yalnizyan-Carson
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (voir plus)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
Hybrid Harmony: A Multi-Person Neurofeedback Application for Interpersonal Synchrony
Phoebe Chen
Sophie Hendrikse
Kaia Sargent
Michele Romani
Matthias Oostrik
Tom F. Wilderjans
Sander Koole
David Medine
Suzanne Dikker
Recent years have seen a dramatic increase in studies measuring brain activity, physiological responses, and/or movement data from multiple … (voir plus)individuals during social interaction. For example, so-called “hyperscanning” research has demonstrated that brain activity may become synchronized across people as a function of a range of factors. Such findings not only underscore the potential of hyperscanning techniques to capture meaningful aspects of naturalistic interactions, but also raise the possibility that hyperscanning can be leveraged as a tool to help improve such naturalistic interactions. Building on our previous work showing that exposing dyads to real-time inter-brain synchrony neurofeedback may help boost their interpersonal connectedness, we describe the biofeedback application Hybrid Harmony, a Brain-Computer Interface (BCI) that supports the simultaneous recording of multiple neurophysiological datastreams and the real-time visualization and sonification of inter-subject synchrony. We report results from 236 dyads experiencing synchrony neurofeedback during naturalistic face-to-face interactions, and show that pairs' social closeness and affective personality traits can be reliably captured with the inter-brain synchrony neurofeedback protocol, which incorporates several different online inter-subject connectivity analyses that can be applied interchangeably. Hybrid Harmony can be used by researchers who wish to study the effects of synchrony biofeedback, and by biofeedback artists and serious game developers who wish to incorporate multiplayer situations into their practice.
Effectiveness of regional diffusion MRI measures in distinguishing multiple sclerosis abnormalities within the cervical spinal cord
Haykel Snoussi
Olivier Commowick
Benoit Combes
Elise Bannier
Slimane Tounekti
Anne Sophie Kerbrat
Christian Barillot
Emmanuel Caruyer
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is… (voir plus) widely used for MS diagnosis and clinical follow‐up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball‐and‐Stick models.
Evaluation of distortion correction methods in diffusion MRI of the spinal cord
Haykel Snoussi
Emmanuel Caruyer
Olivier Commowick
Benoit Combes
Elise Bannier
Anne Kerbrat
Christian Barillot
Learning function from structure in neuromorphic networks
Laura E. Suárez
Bratislav Mišić
Neocortical inhibitory interneuron subtypes are differentially attuned to synchrony- and rate-coded information
Luke Y. Prince
Matthew M. Tran
Dorian Grey
Lydia Saad
Helen Chasiotis
Jeehyun Kwag
Michael M Kohl
Barriers and facilitators to patient engagement in patient safety from patients and healthcare professionals' perspectives: A systematic review and meta-synthesis.
Zahra Chegini
Morteza Arab‐Zozani
Sheikh Mohammed Shariful Islam
Georgia Tobiano
AIMS To explore patients' and healthcare professionals' (HCPs) perceived barriers and facilitators to patient engagement in patient safety. … (voir plus) METHODS We conducted a systematic review and meta-synthesis from five computerized databases, including PubMed/MEDLINE, Embase, Web of Science, Scopus and PsycINFO, as well as grey literature and reference lists of included studies. Data were last searched in December 2019 with no limitation on the year of publication. Qualitative and Mix-methods studies that explored HCPs' and patients' perceptions of barriers and facilitators to patient engagement in patient safety were included. Two authors independently screened the titles and the abstracts of studies. Next, the full texts of the screened studies were reviewed by two authors. Potential discrepancies were resolved by consensus with a third author. The Mixed Methods Appraisal Tool was used for quality appraisal. Thematic analysis was used to synthesize results. RESULTS Nineteen studies out of 2616 were included in this systematic review. Themes related to barriers included: patient unwillingness, HCPs' unwillingness, and inadequate infrastructures. Themes related to facilitators were: encouraging patients, sharing information with patients, establishing trustful relationship, establishing patient-centred care and improving organizational resources. CONCLUSION Patients have an active role in improving their safety. Strategies are required to address barriers that hinder or prevent patient engagement and create capacity and facilitate action.
Sequoia: A Software Framework to Unify Continual Learning Research
Fabrice Normandin
Florian Golemo
Oleksiy Ostapenko
Pau Rodriguez
Matthew D Riemer
J. Hurtado
Lucas Cecchi
Dominic Zhao
Ryan Lindeborg
Timothee LESORT
David Vazquez
Massimo Caccia
The field of Continual Learning (CL) seeks to develop algorithms that accumulate knowledge and skills over time through interaction with non… (voir plus)-stationary environments. In practice, a plethora of evaluation procedures (settings) and algorithmic solutions (methods) exist, each with their own potentially disjoint set of assumptions. This variety makes measuring progress in CL difficult. We propose a taxonomy of settings, where each setting is described as a set of assumptions. A tree-shaped hierarchy emerges from this view, where more general settings become the parents of those with more restrictive assumptions. This makes it possible to use inheritance to share and reuse research, as developing a method for a given setting also makes it directly applicable onto any of its children. We instantiate this idea as a publicly available software framework called Sequoia, which features a wide variety of settings from both the Continual Supervised Learning (CSL) and Continual Reinforcement Learning (CRL) domains. Sequoia also includes a growing suite of methods which are easy to extend and customize, in addition to more specialized methods from external libraries. We hope that this new paradigm and its first implementation can help unify and accelerate research in CL. You can help us grow the tree by visiting (this GitHub URL).
An Advanced Noise Reduction and Edge Enhancement Algorithm
Shih-Chia Huang
Quoc-Viet Hoang
Trung-Hieu Le
Yan-Tsung Peng
Ching-Chun Huang
Cheng Zhang
Kai-Han Cheng
Sha-Wo Huang
Complementary metal-oxide-semiconductor (CMOS) image sensors can cause noise in images collected or transmitted in unfavorable environments,… (voir plus) especially low-illumination scenarios. Numerous approaches have been developed to solve the problem of image noise removal. However, producing natural and high-quality denoised images remains a crucial challenge. To meet this challenge, we introduce a novel approach for image denoising with the following three main contributions. First, we devise a deep image prior-based module that can produce a noise-reduced image as well as a contrast-enhanced denoised one from a noisy input image. Second, the produced images are passed through a proposed image fusion (IF) module based on Laplacian pyramid decomposition to combine them and prevent noise amplification and color shift. Finally, we introduce a progressive refinement (PR) module, which adopts the summed-area tables to take advantage of spatially correlated information for edge and image quality enhancement. Qualitative and quantitative evaluations demonstrate the efficiency, superiority, and robustness of our proposed method.