Combined Reinforcement Learning via Abstract Representations
Vincent Francois-Lavet
In the quest for efficient and robust reinforcement learning methods, both model-free and model-based approaches offer advantages. In this p… (voir plus)aper we propose a new way of explicitly bridging both approaches via a shared low-dimensional learned encoding of the environment, meant to capture summarizing abstractions. We show that the modularity brought by this approach leads to good generalization while being computationally efficient, with planning happening in a smaller latent state space. In addition, this approach recovers a sufficient low-dimensional representation of the environment, which opens up new strategies for interpretable AI, exploration and transfer learning.
A Comparative Analysis of Expected and Distributional Reinforcement Learning
Since their introduction a year ago, distributional approaches to reinforcement learning (distributional RL) have produced strong results re… (voir plus)lative to the standard approach which models expected values (expected RL). However, aside from convergence guarantees, there have been few theoretical results investigating the reasons behind the improvements distributional RL provides. In this paper we begin the investigation into this fundamental question by analyzing the differences in the tabular, linear approximation, and non-linear approximation settings. We prove that in many realizations of the tabular and linear approximation settings, distributional RL behaves exactly the same as expected RL. In cases where the two methods behave differently, distributional RL can in fact hurt performance when it does not induce identical behaviour. We then continue with an empirical analysis comparing distributional and expected RL methods in control settings with non-linear approximators to tease apart where the improvements from distributional RL methods are coming from.
Contextualized Non-local Neural Networks for Sequence Learning
Pengfei Liu
Shuaichen Chang
Xuanjing Huang
Recently, a large number of neural mechanisms and models have been proposed for sequence learning, of which selfattention, as exemplified by… (voir plus) the Transformer model, and graph neural networks (GNNs) have attracted much attention. In this paper, we propose an approach that combines and draws on the complementary strengths of these two methods. Specifically, we propose contextualized non-local neural networks (CN3), which can both dynamically construct a task-specific structure of a sentence and leverage rich local dependencies within a particular neighbourhood.Experimental results on ten NLP tasks in text classification, semantic matching, and sequence labelling show that our proposed model outperforms competitive baselines and discovers task-specific dependency structures, thus providing better interpretability to users.
Generating Character Descriptions for Automatic Summarization of Fiction
Weiwei Zhang
J. Oren
Summaries of fictional stories allow readers to quickly decide whether or not a story catches their interest. A major challenge in automatic… (voir plus) summarization of fiction is the lack of standardized evaluation methodology or high-quality datasets for experimentation. In this work, we take a bottomup approach to this problem by assuming that story authors are uniquely qualified to inform such decisions. We collect a dataset of one million fiction stories with accompanying author-written summaries from Wattpad, an online story sharing platform. We identify commonly occurring summary components, of which a description of the main characters is the most frequent, and elicit descriptions of main characters directly from the authors for a sample of the stories. We propose two approaches to generate character descriptions, one based on ranking attributes found in the story text, the other based on classifying into a list of pre-defined attributes. We find that the classification-based approach performs the best in predicting character descriptions.
Learning Multi-Task Communication with Message Passing for Sequence Learning
Pengfei Liu
Jie Fu
Yue Dong
Xipeng Qiu
We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different ta… (voir plus)sks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks, and propose a general graph multi-task learning framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labelling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines, but also learn interpretable and transferable patterns across tasks.
Learning Options with Interest Functions
Learning temporal abstractions which are partial solutions to a task and could be reused for solving other tasks is an ingredient that can h… (voir plus)elp agents to plan and learn efficiently. In this work, we tackle this problem in the options framework. We aim to autonomously learn options which are specialized in different state space regions by proposing a notion of interest functions, which generalizes initiation sets from the options framework for function approximation. We build on the option-critic framework to derive policy gradient theorems for interest functions, leading to a new interest-option-critic architecture.
Leveraging Observations in Bandits: Between Risks and Benefits
Andrei-Stefan Lupu
Imitation learning has been widely used to speed up learning in novice agents, by allowing them to leverage existing data from experts. Allo… (voir plus)wing an agent to be influenced by external observations can benefit to the learning process, but it also puts the agent at risk of following sub-optimal behaviours. In this paper, we study this problem in the context of bandits. More specifically, we consider that an agent (learner) is interacting with a bandit-style decision task, but can also observe a target policy interacting with the same environment. The learner observes only the target’s actions, not the rewards obtained. We introduce a new bandit optimism modifier that uses conditional optimism contingent on the actions of the target in order to guide the agent’s exploration. We analyze the effect of this modification on the well-known Upper Confidence Bound algorithm by proving that it preserves a regret upper-bound of order O(lnT), even in the presence of a very poor target, and we derive the dependency of the expected regret on the general target policy. We provide empirical results showing both great benefits as well as certain limitations inherent to observational learning in the multi-armed bandit setting. Experiments are conducted using targets satisfying theoretical assumptions with high probability, thus narrowing the gap between theory and application.
Online Adaptative Curriculum Learning for GANs
Thang Doan
Joao Monteiro
Isabela Albuquerque
Generative Adversarial Networks (GANs) can successfully approximate a probability distribution and produce realistic samples. However, open … (voir plus)questions such as sufficient convergence conditions and mode collapse still persist. In this paper, we build on existing work in the area by proposing a novel framework for training the generator against an ensemble of discriminator networks, which can be seen as a one-student/multiple-teachers setting. We formalize this problem within the full-information adversarial bandit framework, where we evaluate the capability of an algorithm to select mixtures of discriminators for providing the generator with feedback during learning. To this end, we propose a reward function which reflects the progress made by the generator and dynamically update the mixture weights allocated to each discriminator. We also draw connections between our algorithm and stochastic optimization methods and then show that existing approaches using multiple discriminators in literature can be recovered from our framework. We argue that less expressive discriminators are smoother and have a general coarse grained view of the modes map, which enforces the generator to cover a wide portion of the data distribution support. On the other hand, highly expressive discriminators ensure samples quality. Finally, experimental results show that our approach improves samples quality and diversity over existing baselines by effectively learning a curriculum. These results also support the claim that weaker discriminators have higher entropy improving modes coverage.
Towards Non-saturating Recurrent Units for Modelling Long-term Dependencies
Chinnadhurai Sankar
Eugene Vorontsov
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish durin… (voir plus)g training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by skipping information through a memory mechanism. We propose a new recurrent architecture (Non-saturating Recurrent Unit; NRU) that relies on a memory mechanism but forgoes both saturating activation functions and saturating gates, in order to further alleviate vanishing gradients. In a series of synthetic and real world tasks, we demonstrate that the proposed model is the only model that performs among the top 2 models across all tasks with and without long-term dependencies, when compared against a range of other architectures.
A Cross-Domain Transferable Neural Coherence Model
Peng Xu
H. Saghir
Jin Sung Kang
Teng Long
Yanshuai Cao
Coherence is an important aspect of text quality and is crucial for ensuring its readability. One important limitation of existing coherence… (voir plus) models is that training on one domain does not easily generalize to unseen categories of text. Previous work advocates for generative models for cross-domain generalization, because for discriminative models, the space of incoherent sentence orderings to discriminate against during training is prohibitively large. In this work, we propose a local discriminative neural model with a much smaller negative sampling space that can efficiently learn against incorrect orderings. The proposed coherence model is simple in structure, yet it significantly outperforms previous state-of-art methods on a standard benchmark dataset on the Wall Street Journal corpus, as well as in multiple new challenging settings of transfer to unseen categories of discourse on Wikipedia articles.
EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
Yue Dong
Zichao Li
Mehdi Rezagholizadeh
We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-inte… (voir plus)rpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.
Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
Chinnadhurai Sankar
Sandeep Subramanian
Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily ad… (voir plus)apted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.