Neuroimaging: into the Multiverse
Jessica Dafflon
Pedro F. Da Costa
František Váša
Ricardo Pio Monti
Peter J. Hellyer
Federico Turkheimer
Jonathan Smallwood
Emily J. H. Jones
Robert Leech
For most neuroimaging questions the huge range of possible analytic choices leads to the possibility that conclusions from any single analyt… (voir plus)ic approach may be misleading. Examples of possible choices include the motion regression approach used and smoothing and threshold factors applied during the processing pipeline. Although it is possible to perform a multiverse analysis that evaluates all possible analytic choices, this can be computationally challenging and repeated sequential analyses on the same data can compromise inferential and predictive power. Here, we establish how active learning on a low-dimensional space that captures the inter-relationships between analysis approaches can be used to efficiently approximate the whole multiverse of analyses. This approach balances the benefits of a multiverse analysis without the accompanying cost to statistical power, computational power and the integrity of inferences. We illustrate this approach with a functional MRI dataset of functional connectivity across adolescence, demonstrating how a multiverse of graph theoretic and simple pre-processing steps can be efficiently navigated using active learning. Our study shows how this approach can identify the subset of analysis techniques (i.e., pipelines) which are best able to predict participants’ ages, as well as allowing the performance of different approaches to be quantified.
The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach
Iulian V. Serban
Chinnadhurai Sankar
Michael Pieper
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-… (voir plus)world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
Association between extreme precipitation, drinking water and acute gastrointestinal illness in the Great Lakes
R. Graydon
M. Mezzacapo
J. Boehme
S. Foldy
T. Edge
J. Brubacher
L. Chan
M. Dellinger
E. Faustman
J. Rose
T. Takaro
DoMoBOT: a bot for automated and interactive domain modelling
Rijul Saini
Gunter Mussbacher
Jörg Kienzle
Domain modelling transforms domain problem descriptions written in natural language (NL) into analyzable and concise domain models (class di… (voir plus)agrams) during requirements analysis or the early stages of design in software development. Since the practice of domain modelling requires time in addition to modelling skills and experience, several approaches have been proposed to automate or semi-automate the construction of domain models from problem descriptions expressed in NL. Despite the existing work on domain model extraction, some significant challenges remain unaddressed: (i) the extracted domain models are not accurate enough to be used directly or with minor modifications in software development, (ii) existing approaches do not facilitate the tracing of the rationale behind the modelling decisions taken by the model extractor, and (iii) existing approaches do not provide interactive interfaces to update the extracted domain models. Therefore, in this paper, we introduce a domain modelling bot called DoMoBOT, explain its architecture, and implement it in the form of a web-based prototype tool. The bot automatically extracts a domain model from a problem description written in NL with an accuracy higher than existing approaches. Furthermore, the bot enables modellers to update a part of the extracted domain model and in response the bot re-configures the other parts of the domain model pro-actively. To improve the accuracy of extracted domain models, we combine the techniques of Natural Language Processing and Machine Learning. Finally, we evaluate the accuracy of the extracted domain models.
Importation of SARS-CoV-2 following the "semaine de relache" and Quebec's (Canada) COVID-19 burden - a mathematical modeling study
Arnaud Godin
Yiqing Xia
Sharmistha Mishra
Dirk Douwes-Schultz
Yannan Shen
Maxime Lavigne
Mélanie Drolet
Alexandra M. Schmidt
Marc Brisson
Mathieu Maheu-Giroux
Background: The Canadian epidemics of COVID-19 exhibit distinct early trajectories, with Quebec bearing a very high initial burden. The sema… (voir plus)ine de relache, or March break, took place two weeks earlier in Quebec as compared to the rest of Canada. This event may have played a role in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to examine the role of case importation in the early transmission dynamics of SARS-CoV-2 in Quebec. Methods: Using detailed surveillance data, we developed and calibrated a deterministic SEIR-type compartmental model of SARS-CoV-2 transmission. We explored the impact of altering the number of imported cases on hospitalizations. Specifically, we investigated scenarios without case importation after March break, and as scenarios where cases were imported with the same frequency/timing as neighboring Ontario. Results: A total of 1,544 and 1,150 returning travelers were laboratory-confirmed in Quebec and Ontario, respectively (with symptoms onset before 2020-03-25). The cumulative number of hospitalizations could have been reduced by 55% (95% credible interval [95%CrI]: 51-59%) had no cases been imported after Quebec's March break. However, had Quebec experienced Ontario's number of imported cases, cumulative hospitalizations would have only been reduced by 12% (95%CrI: 8-16%). Interpretation: Our results suggest that case importation played an important role in the early spread of COVID-19 in Quebec. Yet, heavy importation of SARS-CoV-2 in early March could be insufficient to resolve interprovincial heterogeneities in cumulative hospitalizations. The importance of other factors -public health preparedness, responses, and capacity- should be investigated.
The role of case importation in explaining differences in early SARS-CoV-2 transmission dynamics in Canada—A mathematical modeling study of surveillance data
Arnaud Godin
Yiqing Xia
Sharmistha Mishra
Dirk Douwes-Schultz
Yannan Shen
Maxime Lavigne
Mélanie Drolet
Alexandra M. Schmidt
Marc Brisson
Mathieu Maheu-Giroux
Veille sur les outils numériques en santé dans le contexte de COVID-19
Aude Motulsky
Philippe Després
Cécile Petitgand
Jean Noel Nikiema
Jean-Louis Denis
NU-GAN: High resolution neural upsampling with GAN
Rithesh Kumar
Kundan Kumar
Vicki Anand
In this paper, we propose NU-GAN, a new method for resampling audio from lower to higher sampling rates (upsampling). Audio upsampling is an… (voir plus) important problem since productionizing generative speech technology requires operating at high sampling rates. Such applications use audio at a resolution of 44.1 kHz or 48 kHz, whereas current speech synthesis methods are equipped to handle a maximum of 24 kHz resolution. NU-GAN takes a leap towards solving audio upsampling as a separate component in the text-to-speech (TTS) pipeline by leveraging techniques for audio generation using GANs. ABX preference tests indicate that our NU-GAN resampler is capable of resampling 22 kHz to 44.1 kHz audio that is distinguishable from original audio only 7.4% higher than random chance for single speaker dataset, and 10.8% higher than chance for multi-speaker dataset.
Explicitly Modeling Syntax in Language Model improves Generalization
Syntax is fundamental to our thinking about language. Although neural networks are very successful in many tasks, they do not explicitly mod… (voir plus)el syntactic structure. Failing to capture the structure of inputs could lead to generalization problems and over-parametrization. In the present work, we propose a new syntax-aware language model: Syntactic Ordered Memory (SOM). The model explicitly models the structure with a one-step look-ahead parser and maintains the conditional probability setting of the standard language model. Experiments show that SOM can achieve strong results in language modeling and syntactic generalization tests, while using fewer parameters then other models.
Cross-Modal Information Maximization for Medical Imaging: CMIM
Tristan Sylvain
Francis Dutil
Tess Berthier
Lisa Di Jorio
Margaux Luck
Quantum Tensor Networks, Stochastic Processes, and Weighted Automata
Siddarth Srinivasan
Sandesh M. Adhikary
Jacob Miller
Byron Boots
Modeling joint probability distributions over sequences has been studied from many perspectives. The physics community developed matrix prod… (voir plus)uct states, a tensor-train decomposition for probabilistic modeling, motivated by the need to tractably model many-body systems. But similar models have also been studied in the stochastic processes and weighted automata literature, with little work on how these bodies of work relate to each other. We address this gap by showing how stationary or uniform versions of popular quantum tensor network models have equivalent representations in the stochastic processes and weighted automata literature, in the limit of infinitely long sequences. We demonstrate several equivalence results between models used in these three communities: (i) uniform variants of matrix product states, Born machines and locally purified states from the quantum tensor networks literature, (ii) predictive state representations, hidden Markov models, norm-observable operator models and hidden quantum Markov models from the stochastic process literature,and (iii) stochastic weighted automata, probabilistic automata and quadratic automata from the formal languages literature. Such connections may open the door for results and methods developed in one area to be applied in another.
Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia
Clara A. Moreau
Sebastian G. W. Urchs
Kumar Kuldeep
Pierre Orban
Catherine Schramm
Aurélie Labbe
Guillaume Huguet
Elise Douard
Pierre-Olivier Quirion
Amy Lin
Leila Kushan
Stephanie Grot
David Luck
Adrianna Mendrek
Stephane Potvin
Emmanuel Stip
Thomas Bourgeron
Alan C. Evans
Carrie E. Bearden … (voir 2 de plus)
Sébastien Jacquemont