Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Multi-Agent Estimation and Filtering for Minimizing Team Mean-Squared Error
Motivated by estimation problems arising in autonomous vehicles and decentralized control of unmanned aerial vehicles, we consider multi-age… (voir plus)nt estimation and filtering problems in which multiple agents generate state estimates based on decentralized information and the objective is to minimize a coupled mean-squared error which we call team mean-square error. We call the resulting estimates as minimum team mean-squared error (MTMSE) estimates. We show that MTMSE estimates are different from minimum mean-squared error (MMSE) estimates. We derive closed-form expressions for MTMSE estimates, which are linear function of the observations where the corresponding gain depends on the weight matrix that couples the estimation error. We then consider a filtering problem where a linear stochastic process is monitored by multiple agents which can share their observations (with delay) over a communication graph. We derive expressions to recursively compute the MTMSE estimates. To illustrate the effectiveness of the proposed scheme we consider an example of estimating the distances between vehicles in a platoon and show that MTMSE estimates significantly outperform MMSE estimates and consensus Kalman filtering estimates.
This paper provides a taxonomy for the licensing of data in the fields of artificial intelligence and machine learning. The paper's goal is … (voir plus)to build towards a common framework for data licensing akin to the licensing of open source software. Increased transparency and resolving conceptual ambiguities in existing licensing language are two noted benefits of the approach proposed in the paper. In parallel, such benefits may help foster fairer and more efficient markets for data through bringing about clearer tools and concepts that better define how data can be used in the fields of AI and ML. The paper's approach is summarized in a new family of data license language - \textit{the Montreal Data License (MDL)}. Alongside this new license, the authors and their collaborators have developed a web-based tool to generate license language espousing the taxonomies articulated in this paper.
Continual learning is the ability of an agent to learn online with a non-stationary and never-ending stream of data. A key component for suc… (voir plus)h never-ending learning process is to overcome the catastrophic forgetting of previously seen data, a problem that neural networks are well known to suffer from. The solutions developed so far often relax the problem of continual learning to the easier task-incremental setting, where the stream of data is divided into tasks with clear boundaries. In this paper, we break the limits and move to the more challenging online setting where we assume no information of tasks in the data stream. We start from the idea that each learning step should not increase the losses of the previously learned examples through constraining the optimization process. This means that the number of constraints grows linearly with the number of examples, which is a serious limitation. We develop a solution to select a fixed number of constraints that we use to approximate the feasible region defined by the original constraints. We compare our approach against the methods that rely on task boundaries to select a fixed set of examples, and show comparable or even better results, especially when the boundaries are blurry or when the data distributions are imbalanced.
Abstract Large-scale in vivo neuroimaging datasets offer new possibilities for reliable, well-powered measures of interregional structural d… (voir plus)ifferences and biomarkers of pathological changes in a wide variety of neurological and psychiatric diseases. However, so far studies have been structurally and functionally imprecise, being unable to relate pathological changes to specific cortical layers or neurobiological processes. We developed artificial neural networks to segment cortical and laminar surfaces in the BigBrain, a 3D histological model of the human brain. We sought to test whether previously-reported thickness gradients, as measured by MRI, in sensory and motor processing cortices, were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Identifying common gradients of cortical organisation enables us to meaningfully relate microstructural, macrostructural and functional cortical parameters. Analysis of thickness gradients across sensory cortices, using our fully segmented six-layered model, was consistent with MRI findings, showing increasing thickness moving up the processing hierarchy. In contrast, fronto-motor cortices showed the opposite pattern with changes in thickness of layers III, V and VI being the primary drivers of these gradients. As well as identifying key differences between sensory and motor gradients, our findings show how the use of this laminar atlas offers insights that will be key to linking single-neuron morphological changes, mesoscale cortical layers and macroscale cortical thickness.
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
We develop a new Low-level, First-order Probabilistic Programming Language~(LF-PPL) suited for models containing a mix of continuous, discre… (voir plus)te, and/or piecewise-continuous variables. The key success of this language and its compilation scheme is in its ability to automatically distinguish parameters the density function is discontinuous with respect to, while further providing runtime checks for boundary crossings. This enables the introduction of new inference engines that are able to exploit gradient information, while remaining efficient for models which are not everywhere differentiable. We demonstrate this ability by incorporating a discontinuous Hamiltonian Monte Carlo (DHMC) inference
engine that is able to deliver automated and efficient inference for non-differentiable models. Our system is backed up by a mathematical formalism that ensures that any model expressed in this language has a density with measure zero discontinuities to maintain the validity of the inference engine.
In model-based reinforcement learning, the agent interleaves between model learning and planning. These two components are inextricably inte… (voir plus)rtwined. If the model is not able to provide sensible long-term prediction, the executed planner would exploit model flaws, which can yield catastrophic failures. This paper focuses on building a model that reasons about the long-term future and demonstrates how to use this for efficient planning and exploration. To this end, we build a latent-variable autoregressive model by leveraging recent ideas in variational inference. We argue that forcing latent variables to carry future information through an auxiliary task substantially improves long-term predictions. Moreover, by planning in the latent space, the planner's solution is ensured to be within regions where the model is valid. An exploration strategy can be devised by searching for unlikely trajectories under the model. Our method achieves higher reward faster compared to baselines on a variety of tasks and environments in both the imitation learning and model-based reinforcement learning settings.
Multi-agent reinforcement learning has made significant progress in recent years, but it remains a hard problem. Hence, one often resorts to… (voir plus) developing learning algorithms for specific classes of multi-agent systems. In this paper we study reinforcement learning in a specific class of multi-agent systems systems called mean-field games. In particular, we consider learning in stationary mean-field games. We identify two different solution concepts---stationary mean-field equilibrium and stationary mean-field social-welfare optimal policy---for such games based on whether the agents are non-cooperative or cooperative, respectively. We then generalize these solution concepts to their local variants using bounded rationality based arguments. For these two local solution concepts, we present two reinforcement learning algorithms. We show that the algorithms converge to the right solution under mild technical conditions and demonstrate this using two numerical examples.
Polar codes have received recent attention due to their potential to be applied in advanced wireless communication protocols such as the fif… (voir plus)th generation mobile communication system (5G). Among the existing decoding algorithms, Belief Propagation (BP) exhibits high-throughput, low-latency, and soft output with a high hardware cost. Stochastic computing, as a form of approximate computing, provides a potential low-cost implementation solution for the BP algorithm. However, existing stochastic BP decoders suffer from a relatively long decoding latency resulting in low hardware efficiency. In this paper, a novel bit-wise iterative stochastic decoding architecture for the BP algorithm is proposed to improve the throughput and hardware efficiency. By utilizing the frozen bits of polar codes and stochastic computing, multiple novel optimization methods are presented to further speed up convergence and increase the hardware efficiency.
2019-03-01
IEEE Transactions on Signal Processing (published)
Polar codes have received recent attention due to their potential to be applied in advanced wireless communication protocols such as the fif… (voir plus)th generation mobile communication system (5G). Among the existing decoding algorithms, Belief Propagation (BP) exhibits high-throughput, low-latency, and soft output with a high hardware cost. Stochastic computing, as a form of approximate computing, provides a potential low-cost implementation solution for the BP algorithm. However, existing stochastic BP decoders suffer from a relatively long decoding latency resulting in low hardware efficiency. In this paper, a novel bit-wise iterative stochastic decoding architecture for the BP algorithm is proposed to improve the throughput and hardware efficiency. By utilizing the frozen bits of polar codes and stochastic computing, multiple novel optimization methods are presented to further speed up convergence and increase the hardware efficiency.
We present the first automatic end-to-end deep learning framework for the prediction of future patient disability progression (one year from… (voir plus) baseline) based on multi-modal brain Magnetic Resonance Images (MRI) of patients with Multiple Sclerosis (MS). The model uses parallel convolutional pathways, an idea introduced by the popular Inception net and is trained and tested on two large proprietary, multi-scanner, multi-center, clinical trial datasets of patients with Relapsing-Remitting Multiple Sclerosis (RRMS). Experiments on 465 patients on the placebo arms of the trials indicate that the model can accurately predict future disease progression, measured by a sustained increase in the extended disability status scale (EDSS) score over time. Using only the multi-modal MRI provided at baseline, the model achieves an AUC of 0.66 +- 0.055. However, when supplemental lesion label masks are provided as inputs as well, the AUC increases to 0.701 +- 0.027. Furthermore, we demonstrate that uncertainty estimates based on Monte Carlo dropout sample variance correlate with errors made by the model. Clinicians provided with the predictions computed by the model can therefore use the associated uncertainty estimates to assess which scans require further examination.
In this work, we consider the problem of autonomously discovering behavioral abstractions, or options, for reinforcement learning agents. We… (voir plus) propose an algorithm that focuses on the termination function, as opposed to - as is common - the policy. The termination function is usually trained to optimize a control objective: an option ought to terminate if another has better value. We offer a different, information-theoretic perspective, and propose that terminations should focus instead on the compressibility of the option’s encoding - arguably a key reason for using abstractions.To achieve this algorithmically, we leverage the classical options framework, and learn the option transition model as a “critic” for the termination function. Using this model, we derive gradients that optimize the desired criteria. We show that the resulting options are non-trivial, intuitively meaningful, and useful for learning.