Publications

Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
Prakhar Ganeesh
Usman Gohar
Lu Cheng
With fairness concerns gaining significant attention in Machine Learning (ML), several bias mitigation techniques have been proposed, often … (voir plus)compared against each other to find the best method. These benchmarking efforts tend to use a common setup for evaluation under the assumption that providing a uniform environment ensures a fair comparison. However, bias mitigation techniques are sensitive to hyperparameter choices, random seeds, feature selection, etc., meaning that comparison on just one setting can unfairly favour certain algorithms. In this work, we show significant variance in fairness achieved by several algorithms and the influence of the learning pipeline on fairness scores. We highlight that most bias mitigation techniques can achieve comparable performance, given the freedom to perform hyperparameter optimization, suggesting that the choice of the evaluation parameters-rather than the mitigation technique itself-can sometimes create the perceived superiority of one method over another. We hope our work encourages future research on how various choices in the lifecycle of developing an algorithm impact fairness, and trends that guide the selection of appropriate algorithms.
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
Fair Resource Allocation in Weakly Coupled Markov Decision Processes
We consider fair resource allocation in sequential decision-making environments modeled as weakly coupled Markov decision processes, where r… (voir plus)esource constraints couple the action spaces of
Feasible Learning
Ignacio Hounie
Juan Elenter
Jose Gallego-Posada
Alejandro Ribeiro
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bound… (voir plus)s the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance \emph{on every individual data point}. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
A flaw in using pre-trained pLLMs in protein-protein interaction inference models
With the growing pervasiveness of pre-trained protein large language models (pLLMs), pLLM-based methods are increasingly being put forward f… (voir plus)or the protein-protein interaction (PPI) inference task. Here, we identify and confirm that existing pre-trained pLLMs are a source of data leakage for the downstream PPI task. We characterize the extent of the data leakage problem by training and comparing small and efficient pLLMs on a dataset that controls for data leakage (“strict”) with one that does not (“non-strict”). While data leakage from pre-trained pLLMs cause measurable inflation of testing scores, we find that this does not necessarily extend to other, non-paired biological tasks such as protein keyword annotation. Further, we find no connection between the context-lengths of pLLMs and the performance of pLLM-based PPI inference methods on proteins with sequence lengths that surpass it. Furthermore, we show that pLLM-based and non-pLLM-based models fail to generalize in tasks such as prediction of the human-SARS-CoV-2 PPIs or the effect of point mutations on binding-affinities. This study demonstrates the importance of extending existing protocols for the evaluation of pLLM-based models applied to paired biological datasets and identifies areas of weakness of current pLLM models.
Multilingual Hallucination Gaps
Cléa Chataigner
Performative Prediction on Games and Mechanism Design
Mehrnaz Mofakhami
Fernando P. Santos
Planning and Learning in Risk-Aware Restless Multi-Arm Bandits
Yossiri Adulyasak
Privacy-Preserving Group Fairness in Cross-Device Federated Learning
Sikha Pentyala
Nicola Neophytou
Anderson Nascimento
Martine De Cock
Group fairness ensures that the outcome of machine learning (ML) based decision making systems are notbiased towards a certain group of peop… (voir plus)le defined by a sensitive attribute such as gender or ethnicity. Achievinggroup fairness in Federated Learning (FL) is challenging because mitigating bias inherently requires usingthe sensitive attribute values of all clients, while FL is aimed precisely at protecting privacy by not givingaccess to the clients’ data. As we show in this paper, this conflict between fairness and privacy in FL can beresolved by combining FL with Secure Multiparty Computation (MPC) and Differential Privacy (DP). Tothis end, we propose a privacy-preserving approach to calculate group fairness notions in the cross-device FLsetting. Then, we propose two bias mitigation pre-processing and post-processing techniques in cross-deviceFL under formal privacy guarantees, without requiring the clients to disclose their sensitive attribute values.Empirical evaluations on real world datasets demonstrate the effectiveness of our solution to train fair andaccurate ML models in federated cross-device setups with privacy guarantees to the users.
Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
Jia Lin Hau
Mohammad Ghavamzadeh
Marek Petrik
Representation Learning via Non-Contrastive Mutual Information
Zhaohan Daniel Guo
Bernardo Avila Pires
Dale Schuurmans
Bo Dai