Publications

A protocol for trustworthy EEG decoding with neural networks
Davide Borra
Elisa Magosso
SpeechBrain-MOABB: An open-source Python library for benchmarking deep neural networks applied to EEG signals
Davide Borra
Francesco Paissan
Structured Pruning of Neural Networks for Constraints Learning
Matteo Cacciola
Antonio Frangioni
Andrea Lodi
In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse app… (voir plus)lications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies in the literature have developed such formulations for many ML predictors, with a particular emphasis on Artificial Neural Networks (ANNs) due to their significant interest in many applications. However, ANNs frequently contain a large number of parameters, resulting in MIP formulations that are impractical to solve, thereby impeding scalability. In fact, the ML community has already introduced several techniques to reduce the parameter count of ANNs without compromising their performance, since the substantial size of modern ANNs presents challenges for ML applications as it significantly impacts computational efforts during training and necessitates significant memory resources for storage. In this paper, we showcase the effectiveness of pruning, one of these techniques, when applied to ANNs prior to their integration into MIPs. By pruning the ANN, we achieve significant improvements in the speed of the solution process. We discuss why pruning is more suitable in this context compared to other ML compression techniques, and we identify the most appropriate pruning strategies. To highlight the potential of this approach, we conduct experiments using feed-forward neural networks with multiple layers to construct adversarial examples. Our results demonstrate that pruning offers remarkable reductions in solution times without hindering the quality of the final decision, enabling the resolution of previously unsolvable instances.
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
Ian Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
A common way to drive progress of AI models and agents is to compare their performance on standardized benchmarks. Comparing the performance… (voir plus) of general agents requires aggregating their individual performances across a potentially wide variety of different tasks. In this paper, we describe a novel ranking scheme inspired by social choice frameworks, called Soft Condorcet Optimization (SCO), to compute the optimal ranking of agents: the one that makes the fewest mistakes in predicting the agent comparisons in the evaluation data. This optimal ranking is the maximum likelihood estimate when evaluation data (which we view as votes) are interpreted as noisy samples from a ground truth ranking, a solution to Condorcet's original voting system criteria. SCO ratings are maximal for Condorcet winners when they exist, which we show is not necessarily true for the classical rating system Elo. We propose three optimization algorithms to compute SCO ratings and evaluate their empirical performance. When serving as an approximation to the Kemeny-Young voting method, SCO rankings are on average 0 to 0.043 away from the optimal ranking in normalized Kendall-tau distance across 865 preference profiles from the PrefLib open ranking archive. In a simulated noisy tournament setting, SCO achieves accurate approximations to the ground truth ranking and the best among several baselines when 59\% or more of the preference data is missing. Finally, SCO ranking provides the best approximation to the optimal ranking, measured on held-out test sets, in a problem containing 52,958 human players across 31,049 games of the classic seven-player game of Diplomacy.
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Andrea Maccio
General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (voir plus)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
AugmenToxic: Leveraging Reinforcement Learning to Optimize LLM Instruction Fine-Tuning for Data Augmentation to Enhance Toxicity Detection
Arezo Bodaghi
Ketra A. Schmitt
From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems
Shalaleh Rismani
Roel Dobbe
Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak Rebates
Julien Pallage
Bertrand Scherrer
Salma Naccache
Christophe B'elanger
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
Mercy Nyamewaa Asiedu
Awa Dieng
Iskandar Haykel
Stephen R. Pfohl
Chirag Nagpal
Maria Nagawa
Abigail Oppong
Sanmi Koyejo
Katherine Heller
With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand … (voir plus)and mitigate biases these systems may exhibit. Fair-ness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South.This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 28 experts inML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased.However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.
General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
Investigating the Benefits of Nonlinear Action Maps in Data-Driven Teleoperation
Michael Przystupa
Matthew E. Taylor
Martin Jägersand
Justus Piater
Samuele Tosatto
As robots become more common for both able-bodied individuals and those living with a disability, it is increasingly important that lay peop… (voir plus)le be able to drive multi-degree-of-freedom platforms with low-dimensional controllers. One approach is to use state-conditioned action mapping methods to learn mappings between low-dimensional controllers and high DOF manipulators -- prior research suggests these mappings can simplify the teleoperation experience for users. Recent works suggest that neural networks predicting a local linear function are superior to the typical end-to-end multi-layer perceptrons because they allow users to more easily undo actions, providing more control over the system. However, local linear models assume actions exist on a linear subspace and may not capture nuanced actions in training data. We observe that the benefit of these mappings is being an odd function concerning user actions, and propose end-to-end nonlinear action maps which achieve this property. Unfortunately, our experiments show that such modifications offer minimal advantages over previous solutions. We find that nonlinear odd functions behave linearly for most of the control space, suggesting architecture structure improvements are not the primary factor in data-driven teleoperation. Our results suggest other avenues, such as data augmentation techniques and analysis of human behavior, are necessary for action maps to become practical in real-world applications, such as in assistive robotics to improve the quality of life of people living with w disability.