Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (publié)
Scaling adaptive traffic signal control involves dealing with combinatorial state and action spaces. Multi-agent reinforcement learning atte… (voir plus)mpts to address this challenge by distributing control to specialized agents. However, specialization hinders generalization and transferability, and the computational graphs underlying neural-network architectures—dominating in the multi-agent setting—do not offer the flexibility to handle an arbitrary number of entities which changes both between road networks, and over time as vehicles traverse the network. We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks which adapts to the structure of any road network, to learn detailed representations of traffic signal controllers and their surroundings. Our decentralized approach enables learning of a transferable-adaptive-traffic-signal-control policy. After being trained on an arbitrary set of road networks, our model can generalize to new road networks and traffic distributions, with no additional training and a constant number of parameters, enabling greater scalability compared to prior methods. Furthermore, our approach can exploit the granularity of available data by capturing the (dynamic) demand at both the lane level and the vehicle level. The proposed method is tested on both road networks and traffic settings never experienced during training. We compare IG-RL to multi-agent reinforcement learning and domain-specific baselines. In both synthetic road networks and in a larger experiment involving the control of the 3,971 traffic signals of Manhattan, we show that different instantiations of IG-RL outperform baselines.
2022-07-01
IEEE Transactions on Intelligent Transportation Systems (publié)
Health care systems are the infrastructures that are put together to deliver health and social services to the population at large. These or… (voir plus)ganizations are increasingly applying Artificial Intelligence (AI) to improve the efficiency and effectiveness of health and social care. Unfortunately, both health care systems and AI are confronted with a lack of Equity, Diversity, and Inclusion (EDI). This short paper focuses on the importance of integrating EDI concepts throughout the life cycle of AI in health. We discuss the risks that the lack of EDI in the design, development and implementation of AI-based tools might have on the already marginalized communities and populations in the healthcare setting. Moreover, we argue that integrating EDI principles and practice throughout the lifecycle of AI in health has an important role in achieving health equity for all populations. Further research needs to be conducted to explore how studies in AI-health have integrated.
2022-06-29
13th Augmented Human International Conference (publié)