Publications

Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering
Saber Malekmohammadi
Afaf Taïk
Federated Learning (FL) is a decentralized machine learning (ML) approach that keeps data localized and often incorporates Differential Priv… (voir plus)acy (DP) to enhance privacy guarantees. Similar to previous work on DP in ML, we observed that differentially private federated learning (DPFL) introduces performance disparities, particularly affecting minority groups. Recent work has attempted to address performance fairness in vanilla FL through clustering, but this method remains sensitive and prone to errors, which are further exacerbated by the DP noise in DPFL. To fill this gap, in this paper, we propose a novel clustered DPFL algorithm designed to effectively identify clients' clusters in highly heterogeneous settings while maintaining high accuracy with DP guarantees. To this end, we propose to cluster clients based on both their model updates and training loss values. Our proposed approach also addresses the server's uncertainties in clustering clients' model updates by employing larger batch sizes along with Gaussian Mixture Model (GMM) to alleviate the impact of noise and potential clustering errors, especially in privacy-sensitive scenarios. We provide theoretical analysis of the effectiveness of our proposed approach. We also extensively evaluate our approach across diverse data distributions and privacy budgets and show its effectiveness in mitigating the disparate impact of DP in FL settings with a small computational cost.
RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning
Mingqi Yuan
Roger Creus Castanyer
Bo Li
Xin Jin
Wenjun Zeng
Stress-Testing Capability Elicitation With Password-Locked Models
Ryan Greenblatt
Fabien Roger
Dmitrii Krasheninnikov
On the Limits of Multi-modal Meta-Learning with Auxiliary Task Modulation Using Conditional Batch Normalization
Jordi Armengol-Estap'e
Vincent Michalski
Ramnath Kumar
Pierre-Luc St-Charles
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples. Recent studies show that cross… (voir plus)-modal learning can improve representations for few-shot classification. More specifically, language is a rich modality that can be used to guide visual learning. In this work, we experiment with a multi-modal architecture for few-shot learning that consists of three components: a classifier, an auxiliary network, and a bridge network. While the classifier performs the main classification task, the auxiliary network learns to predict language representations from the same input, and the bridge network transforms high-level features of the auxiliary network into modulation parameters for layers of the few-shot classifier using conditional batch normalization. The bridge should encourage a form of lightweight semantic alignment between language and vision which could be useful for the classifier. However, after evaluating the proposed approach on two popular few-shot classification benchmarks we find that a) the improvements do not reproduce across benchmarks, and b) when they do, the improvements are due to the additional compute and parameters introduced by the bridge network. We contribute insights and recommendations for future work in multi-modal meta-learning, especially when using language representations.
Arbuscular and ectomycorrhizal tree seedling growth is inhibited by competition from neighboring roots and associated fungal hyphae
V. Parasquive
Jacques Brisson
P. L. Chagnon
ERS0: Enhancing Military Cybersecurity with AI-Driven SBOM for Firmware Vulnerability Detection and Asset Management
Max Beninger
Philippe Charland
Steven H. H. Ding
Firmware vulnerability detection and asset management through a software bill of material (SBOM) approach is integral to defensive military … (voir plus)operations. SBOMs provide a comprehensive list of software components, enabling military organizations to identify vulnerabilities within critical systems, including those controlling various functions in military platforms, as well as in operational technologies and Internet of Things devices. This proactive approach is essential for supply chain security, ensuring that software components are sourced from trusted suppliers and have not been tampered with during production, distribution, or through updates. It is a key element of defense strategies, allowing for rapid assessment, response, and mitigation of vulnerabilities, ultimately safeguarding military capabilities and information from cyber threats. In this paper, we propose ERS0, an SBOM system, driven by artificial intelligence (AI), for detecting firmware vulnerabilities and managing firmware assets. We harness the power of pre-trained large-scale language models to effectively address a wide array of string patterns, extending our coverage to thousands of third-party library patterns. Furthermore, we employ AI-powered code clone search models, enabling a more granular and precise search for vulnerabilities at the binary level, reducing our dependence on string analysis only. Additionally, our AI models extract high-level behavioral functionalities in firmware, such as communication and encryption, allowing us to quantitatively define the behavioral scope of firmware. In preliminary comparative assessments against open-source alternatives, our solution has demonstrated better SBOM coverage, accuracy in vulnerability identification, and a wider array of features.
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Seanie Lee
Minsu Kim
Lynn Cherif
David Dobre
Juho Lee
Sung Ju Hwang
Kenji Kawaguchi
Nikolay Malkin
Moksh J. Jain
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (voir plus)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris Oreshkin
Online deep learning solves the problem of learning from streams of data, reconciling two opposing objectives: learn fast and learn deep. Ex… (voir plus)isting work focuses almost exclusively on exploring pure deep learning solutions, which are much better suited to handle the"deep"than the"fast"part of the online learning equation. In our work, we propose a different paradigm, based on a hybrid multilearner approach. First, we develop a fast online logistic regression learner. This learner does not rely on backpropagation. Instead, it uses closed form recursive updates of model parameters, handling the fast learning part of the online learning problem. We then analyze the existing online deep learning theory and show that the widespread ODL approach, currently operating at complexity
Structured Learning in Time-dependent Cox Models
Guanbo Wang
Yi Lian
Robert W. Platt
Rui Wang
Sylvie Perreault
Marc Dorais
Mireille E. Schnitzer
The Cost of Arbitrariness for Individuals: Examining the Legal and Technical Challenges of Model Multiplicity
Prakhar Ganesh
Ihsan Ibrahim Daldaban
Ignacio Cofone
Model multiplicity, the phenomenon where multiple models achieve similar performance despite different underlying learned functions, introdu… (voir plus)ces arbitrariness in model selection. While this arbitrariness may seem inconsequential in expectation, its impact on individuals can be severe. This paper explores various individual concerns stemming from multiplicity, including the effects of arbitrariness beyond final predictions, disparate arbitrariness for individuals belonging to protected groups, and the challenges associated with the arbitrariness of a single algorithmic system creating a monopoly across various contexts. It provides both an empirical examination of these concerns and a comprehensive analysis from the legal standpoint, addressing how these issues are perceived in the anti-discrimination law in Canada. We conclude the discussion with technical challenges in the current landscape of model multiplicity to meet legal requirements and the legal gap between current law and the implications of arbitrariness in model selection, highlighting relevant future research directions for both disciplines.
Towards a Reliable French Speech Recognition Tool for an Automated Diagnosis of Learning Disabilities
Jihene Rezgui
Félix Jobin
Younes Kechout
Chritine Turgeon
Dyslexia, characterized by severe challenges in reading and spelling acquisition, presents a substantial barrier to proficient literacy, res… (voir plus)ulting in significantly reduced reading speed (2 to 3 times slower) and diminished text comprehension. With a prevalence ranging from 5G to 10% in the population, early intervention by speech and language pathologists (SLPs) can mitigate dyslexia's effects, but the diagnosis bottleneck impedes timely support. To address this, we propose leveraging machine learning tools to expedite the diagnosis process, focusing on automating phonetic transcription, a critical step in dyslexia assessment. We investigated the practicality of two model configurations utilizing Google's speech-to-text API with children speech in evaluation scenarios and compared their results against transcriptions crafted by experts. The first configuration focuses on Google API's speech-to-text while the second integrates Phonemizer, a text-to-phonemes tool based on a dictionary. Results analysis indicate that our Google-Phonemizer model yields reading accuracies comparable to those computed from human-made transcriptions, offering promise for clinical application. These findings underscore the potential of AI-driven solutions to enhance dyslexia diagnosis efficiency, paving the way for improved accessibility to vital SLP services.
Understanding Intrinsic Socioeconomic Biases in Large Language Models
Mina Arzaghi
Florian Carichon
Large Language Models (LLMs) are increasingly integrated into critical decision-making processes, such as loan approvals and visa applicatio… (voir plus)ns, where inherent biases can lead to discriminatory outcomes. In this paper, we examine the nuanced relationship between demographic attributes and socioeconomic biases in LLMs, a crucial yet understudied area of fairness in LLMs. We introduce a novel dataset of one million English sentences to systematically quantify socioeconomic biases across various demographic groups. Our findings reveal pervasive socioeconomic biases in both established models such as GPT-2 and state-of-the-art models like Llama 2 and Falcon. We demonstrate that these biases are significantly amplified when considering intersectionality, with LLMs exhibiting a remarkable capacity to extract multiple demographic attributes from names and then correlate them with specific socioeconomic biases. This research highlights the urgent necessity for proactive and robust bias mitigation techniques to safeguard against discriminatory outcomes when deploying these powerful models in critical real-world applications.