Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Designing Biological Sequences via Meta-Reinforcement Learning and Bayesian Optimization
The ability to accelerate the design of biological sequences can have a substantial impact on the progress of the medical field. The problem… (voir plus) can be framed as a global optimization problem where the objective is an expensive black-box function such that we can query large batches restricted with a limitation of a low number of rounds. Bayesian Optimization is a principled method for tackling this problem. However, the astronomically large state space of biological sequences renders brute-force iterating over all possible sequences infeasible. In this paper, we propose MetaRLBO where we train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection via Bayesian Optimization. We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data acquired in the previous rounds. Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results compared to existing strong baselines.
Rapidly Inferring Personalized Neurostimulation Parameters with Meta-Learning: A Case Study of Individualized Fiber Recruitment in Vagus Nerve Stimulation
There are many frameworks for deep generative modeling, each often presented with their own specific training algorithms and inference metho… (voir plus)ds. Here, we demonstrate the connections between existing deep generative models and the recently introduced GFlowNet framework, a probabilistic inference machine which treats sampling as a decision-making process. This analysis sheds light on their overlapping traits and provides a unifying viewpoint through the lens of learning with Markovian trajectories. Our framework provides a means for unifying training and inference algorithms, and provides a route to shine a unifying light over many generative models. Beyond this, we provide a practical and experimentally verified recipe for improving generative modeling with insights from the GFlowNet perspective.
This study investigated the prediction of the risk of hypoxic ischemic encephalopathy using intrapartum cardiotocography records with a long… (voir plus) short-term memory re-current neural network. Across the 12 hours of labour, HIE sensitivity rose from 0.25 to 0.56 as delivery approached while specificity remained approximately constant with a mean of 0.71 and standard deviation of 0.04. The results show that classification improves as delivery approaches but that performance needs improvement. Future work will address the limitations of this preliminary study by investigating input signal transformations and the use of other network architectures to improve the model performance.
Converging, cross-species evidence indicates that memory for time is supported by hippocampal area CA1 and entorhinal cortex. However, limit… (voir plus)ed evidence characterizes how these regions preserve temporal memories over long timescales (e.g., months). At long timescales, memoranda may be encountered in multiple temporal contexts, potentially creating interference. Here, using 7T fMRI, we measured CA1 and entorhinal activity patterns as human participants viewed thousands of natural scene images distributed, and repeated, across many months. We show that memory for an image’s original temporal context was predicted by the degree to which CA1/entorhinal activity patterns from the first encounter with an image were re-expressed during re-encounters occurring minutes to months later. Critically, temporal memory signals were dissociable from predictors of recognition confidence, which were carried by distinct medial temporal lobe expressions. These findings suggest that CA1 and entorhinal cortex preserve temporal memories across long timescales by coding for and reinstating temporal context information.
Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically i… (voir plus)ncreased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: ( a) planetary boundaries and stability, ( b) equity within and between countries, and ( c) human agency and governance, mediated via ( i) increasing resource efficiency, ( ii) accelerating consumption and scale effects, ( iii) expanding political and economic control, and ( iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability. Expected final online publication date for the Annual Review of Environment and Resources, Volume 47 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.