FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters
Yuwei Cheng
Jiannan Zhu
Mengxin Jiang
Jie Fu
Changsong Pang
Peidong Wang
Kris Sankaran
Olawale Moses Onabola
Yimin Liu
Dianbo Liu
Marine debris is severely threatening the marine lives and causing sustained pollution to the whole ecosystem. To prevent the wastes from ge… (voir plus)tting into the ocean, it is helpful to clean up the floating wastes in inland waters using the autonomous cleaning devices like unmanned surface vehicles. The cleaning efficiency relies on a high-accurate and robust object detection system. However, the small size of the target, the strong light reflection over water surface, and the reflection of other objects on bank-side all bring challenges to the vision-based object detection system. To promote the practical application for autonomous floating wastes cleaning, we present FloW†, the first dataset for floating waste detection in inland water areas. The dataset consists of an image sub-dataset FloW-Img and a multimodal sub-dataset FloW-RI which contains synchronized millimeter wave radar data and images. Accurate annotations for images and radar data are provided, supporting floating waste detection strategies based on image, radar data, and the fusion of two sensors. We perform several baseline experiments on our dataset, including vision-based and radar-based detection methods. The results show that, the detection accuracy is relatively low and floating waste detection still remains a challenging task.
Inter-Brain Synchronization: From Neurobehavioral Correlation to Causal Explanation
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning
Barbara Feulner
Raeed H. Chowdhury
Lee Miller
Juan A. Gallego
Claudia Clopath
THE EFFECT SIZE OF GENES ON COGNITIVE ABILITIES IS LINKED TO THEIR EXPRESSION ALONG THE MAJOR HIERARCHICAL GRADIENT IN THE HUMAN BRAIN
Sébastien Jacquemont
Guillaume Huguet
Elise Douard
Zohra Saci
Laura Almasy
David C. Glahn
Trade-off Between Accuracy and Fairness of Data-driven Building and Indoor Environment Models: A Comparative Study of Pre-processing Methods
Ying Sun
Fariborz Haghighat
Trade-off Between Accuracy and Fairness of Data-driven Building and Indoor Environment Models: A Comparative Study of Pre-processing Methods
Ying Sun
Fariborz Haghighat
Transfer functions: learning about a lagged exposure-outcome association in time-series data
Hiroshi Mamiya
Alexandra M. Schmidt
Erica E. M. Moodie
Many population exposures in time-series analysis, including food marketing, exhibit a time-lagged association with population health outcom… (voir plus)es such as food purchasing. A common approach to measuring patterns of associations over different time lags relies on a finite-lag model, which requires correct specification of the maximum duration over which the lagged association extends. However, the maximum lag is frequently unknown due to the lack of substantive knowledge or the geographic variation of lag length. We describe a time-series analytical approach based on an infinite lag specification under a transfer function model that avoids the specification of an arbitrary maximum lag length. We demonstrate its application to estimate the lagged exposure-outcome association in food environmental research: display promotion of sugary beverages with lagged sales.
Graph Neural Networks in Natural Language Processing
Lingfei Wu
Natural language processing (NLP) and understanding aim to read from unformatted text to accomplish different tasks. While word embeddings l… (voir plus)earned by deep neural networks are widely used, the underlying linguistic and semantic structures of text pieces cannot be fully exploited in these representations. Graph is a natural way to capture the connections between different text pieces, such as entities, sentences, and documents. To overcome the limits in vector space models, researchers combine deep learning models with graph-structured representations for various tasks in NLP and text mining. Such combinations help to make full use of both the structural information in text and the representation learning ability of deep neural networks. In this chapter, we introduce the various graph representations that are extensively used in NLP, and show how different NLP tasks can be tackled from a graph perspective. We summarize recent research works on graph-based NLP, and discuss two case studies related to graph-based text clustering, matching, and multihop machine reading comprehension in detail. Finally, we provide a synthesis about the important open problems of this subfield.
Data-driven approaches for genetic characterization of SARS-CoV-2 lineages
Fatima Mostefai
Isabel Gamache
Jessie Huang
Arnaud N’Guessan
Justin Pelletier
Ahmad Pesaranghader
David J. Hamelin
Carmen Lia Murall
Raphael Poujol
Jean-Christophe Grenier
Martin Smith
Etienne Caron
Morgan Craig
Jesse Shapiro
The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19)… (voir plus), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajima’s D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.
Estimating the lagged effect of price discounting: a time-series study using transaction data of sugar sweetened beverages.
Hiroshi Mamiya
Alexandra M. Schmidt
Erica E. M. Moodie
Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems
Luca Accorsi
Andrea Lodi
Daniele Vigo
Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation
Brennan Nichyporuk
Jillian L. Cardinell
Justin Szeto
Raghav Mehta
Sotirios A. Tsaftaris
Douglas Arnold