Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particula… (voir plus)r domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
To determine the optimal locations for electric vehicle charging stations, optimisation models need to predict which charging stations users… (voir plus) will select. We estimate discrete choice models to predict the usage of charging stations using only readily available information for charging network operators. Our parameter values are estimated from a unique, revealed preferences dataset of charging sessions in Montreal, Quebec. We find that user distance to stations, proximity to home areas, and the number of outlets at each station are significant factors for predicting station usage. Additionally, amenities near charging stations have a neutral effect overall, with some users demonstrating strong preference or aversion for these locations. High variability among the preferences of users highlight the importance of models which incorporate panel effects. Moreover, integrating mixed logit models within the optimization of charging station network design yields high-quality solutions, even when evaluated under other model specifications.
With the growing pervasiveness of pre-trained protein large language models (pLLMs), pLLM-based methods are increasingly being put forward f… (voir plus)or the protein-protein interaction (PPI) inference task. Here, we identify and confirm that existing pre-trained pLLMs are a source of data leakage for the downstream PPI task. We characterize the extent of the data leakage problem by training and comparing small and efficient pLLMs on a dataset that controls for data leakage (“strict”) with one that does not (“non-strict”). While data leakage from pre-trained pLLMs cause measurable inflation of testing scores, we find that this does not necessarily extend to other, non-paired biological tasks such as protein keyword annotation. Further, we find no connection between the context-lengths of pLLMs and the performance of pLLM-based PPI inference methods on proteins with sequence lengths that surpass it. Furthermore, we show that pLLM-based and non-pLLM-based models fail to generalize in tasks such as prediction of the human-SARS-CoV-2 PPIs or the effect of point mutations on binding-affinities. This study demonstrates the importance of extending existing protocols for the evaluation of pLLM-based models applied to paired biological datasets and identifies areas of weakness of current pLLM models.