Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
According to the Center for Disease Control and Prevention, over 14% of the US population practice mindfulness meditation. The effects of mi… (voir plus)ndfulness training on physical and mental health have been consistently documented, but its effects on interpersonal relationships are not yet fully understood or investigated. Interpersonal relationships play a crucial role in the wellbeing of individuals and society, and therefore, warrants further study. The aim of this paper is to present a tri-process theoretical model of interpersonal mindfulness and a study protocol to validate the proposed model. Specifically, according to the proposed model, mindfulness meditation training increases the self-awareness, self-regulation, and prosociality of those receiving the training, which ameliorates the quality of interpersonal interactions and the socioemotional support provided to other individuals. Finally, better socioemotional support increases the support receiver’s ability to regulate their emotions. Using a multiphasic longitudinal design involving 640 participants randomized into 480 dyads, the proposed protocol aims to validate the tri-process model and to investigate its mechanisms of actions. The proposed study has important theoretical and social implications and will allow devising new and more effective interpersonal mindfulness programs with applications in multiple fields.
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation due to its impressive capabilities in var… (voir plus)ious segmentation tasks and its prompt-based interface. However, recent studies and individual experiments have shown that SAM underperforms in medical image segmentation, since the lack of the medical specific knowledge. This raises the question of how to enhance SAM's segmentation capability for medical images. In this paper, instead of fine-tuning the SAM model, we propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model using a light yet effective adaptation technique. In Med-SA, we propose Space-Depth Transpose (SD-Trans) to adapt 2D SAM to 3D medical images and Hyper-Prompting Adapter (HyP-Adpt) to achieve prompt-conditioned adaptation. We conduct comprehensive evaluation experiments on 17 medical image segmentation tasks across various image modalities. Med-SA outperforms several state-of-the-art (SOTA) medical image segmentation methods, while updating only 2\% of the parameters. Our code is released at https://github.com/KidsWithTokens/Medical-SAM-Adapter.
Pretraining a neural network on a large dataset is becoming a cornerstone in machine learning that is within the reach of only a few communi… (voir plus)ties with large-resources. We aim at an ambitious goal of democratizing pretraining. Towards that goal, we train and release a single neural network that can predict high quality ImageNet parameters of other neural networks. By using predicted parameters for initialization we are able to boost training of diverse ImageNet models available in PyTorch. When transferred to other datasets, models initialized with predicted parameters also converge faster and reach competitive final performance.
Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations… (voir plus). In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than doing it using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves great performance in practice.