MDFD: Study of Distributed Non-IID Scenarios and Frechet Distance-Based Evaluation
Wei Wang
Mingwei Zhang
Ziwen Wu
Qianxi Chen
With the development of distributed machine learning and federated learning, the solution to the data island problem is promoted. People use… (voir plus) computer clusters to train machine learning models on data distributed in different regions. In the early stage of research, researchers usually assume that the data sets of each node are independent identically distribution (IID), but this is a strong assumption, which is challenging to meet in practical applications. Therefore, research on non-IID has become a hot spot in recent years. However, there is no uniform standard for designing and evaluating non-IID scenarios. This paper proposes a Frechet distance-independent non-IID distribution dataset metric MDFD. And we conducted experiments on different types of distributed machine-learning methods in different non-IID scenarios to verify the effectiveness of MDFD.
Mitigating Calibration Bias Without Fixed Attribute Grouping for Improved Fairness in Medical Imaging Analysis
Changjian Shui
Justin Szeto
Raghav Mehta
Douglas Arnold
SDWD: Style Diversity Weighted Distance Evaluates the Intra-Class Data Diversity of Distributed GANs
Wei Wang
Ziwen Wu
Mingwei Zhang
Better Quality Pre-training Data and T5 Models for African Languages
Akintunde Oladipo
Mofetoluwa Adeyemi
Orevaoghene Ahia
Abraham Toluwase Owodunni
Odunayo Ogundepo
Jimmy Lin
In this study, we highlight the importance of enhancing the quality of pretraining data in multilingual language models. Existing web crawl… (voir plus)s have demonstrated quality issues, particularly in the context of low-resource languages. Consequently, we introduce a new multilingual pretraining corpus for
Crystal-GFN: sampling crystals with desirable properties and constraints
Alex Hernandez-Garcia
Alexandre AGM Duval
Alexandra Volokhova
Divya Sharma
pierre luc carrier
Michał Koziarski
Victor Schmidt
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such … (voir plus)as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
Crystal-GFN: sampling crystals with desirable properties and constraints
Alex Hernandez-Garcia
Alexandre AGM Duval
Alexandra Volokhova
Divya Sharma
pierre luc carrier
Michał Koziarski
Victor Schmidt
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such … (voir plus)as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
Driving into the Loop: Mapping Automation Bias and Liability Issues for Advanced Driver Assistance Systems
Katie Szilagyi
Jason Millar
Shalaleh Rismani
Efficient Classification of Long Documents via State-Space Models
Peng Lu
Suyuchen Wang
Mehdi Rezagholizadeh
Ivan Kobyzev
EpiK-Eval: Evaluation for Language Models as Epistemic Models
Gabriele Prato
Jerry Huang
Prasanna Parthasarathi
Shagun Sodhani
In the age of artificial intelligence, the role of large language models (LLMs) is becoming increasingly central. Despite their growing prev… (voir plus)alence, their capacity to consolidate knowledge from different training documents—a crucial ability in numerous applications—remains unexplored. This paper presents the first study examining the capability of LLMs to effectively combine such information within their parameter space. We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives. Evaluations across various LLMs reveal significant weaknesses in this domain. We contend that these shortcomings stem from the intrinsic nature of prevailing training objectives. Consequently, we advocate for refining the approach towards knowledge consolidation, as it harbors the potential to dramatically improve their overall effectiveness and performance. The findings from this study offer insights for developing more robust and reliable LLMs. Our code and benchmark are available at https://github.com/chandar-lab/EpiK-Eval
HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science
Yu Song
Santiago Miret
Huan Zhang
Investigating the Effect of Pre-finetuning BERT Models on NLI Involving Presuppositions
Jad Kabbara
MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
Yuyan Chen
Zhihao Wen
Ge Fan
Zhengyu Chen
Wei Wu
Dayiheng Liu
Zhixu Li
Yanghua Xiao