Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Are vividness judgments in mental imagery correlated with perceptual thresholds?
A decentralized linear quadratic system with a major agent and a collection of minor agents is considered. The major agent affects the minor… (voir plus) agents, but not vice versa. The state of the major agent is observed by all agents. In addition, the minor agents have a noisy observation of their local state. The noise process is not assumed to be Gaussian. The structures of the optimal strategy and the best linear strategy are characterized. It is shown that the major agent's optimal control action is a linear function of the major agent's minimum mean-squared error (MMSE) estimate of the system state while the minor agent's optimal control action is a linear function of the major agent's MMSE estimate of the system state and a “correction term” that depends on the difference of the minor agent's MMSE estimate of its local state and the major agent's MMSE estimate of the minor agent's local state. Since the noise is non-Gaussian, the minor agent's MMSE estimate is a nonlinear function of its observation. It is shown that replacing the minor agent's MMSE estimate with its linear least mean square estimate gives the best linear control strategy. The results are proved using a direct method based on conditional independence, common-information-based splitting of state and control actions, and simplifying the per-step cost based on conditional independence, orthogonality principle, and completion of squares.